Ојлерова карактеристика

У математици, а тачније у алгебарској топологији и полиедарској комбинаторици, Ојлерова карактеристика (у појединим гранама математике понекад реферисана и само као карактеристика или Ојлеров број — не треба мешати са Ојлеровом константом, на коју се, такође, често реферише као на Ојлеров број) је инваријантна вредност која зависи од тополошког облика и особина објекта који описује. Најчешће се обележава малим грчким словом χ (хи). Назив захваљује Леонарду Ојлеру, познатом швајцарском математичару и физичару.

Оригинално се употребљавала у геометрији за описивање полиедара, али је своју примену пронашла у топологији и касније у теорији графова. То је наведено за платонска тела 1537. године у необјављеном рукопису Франческа Мауролика.[1] Леонард Ојлер, по коме је концепт добио име, увео га је генерално за конвексне полиедре, али није успео да ригорозно докаже да је он инваријанта. У савременој математици, Ојлерова карактеристика произилази из хомологије и, апстрактније, хомолошке алгебре.[2][3][4][5]

Ојлерова карактеристика у геометрији и топологији уреди

Троугао има Ојлерову карактеристику 1.

Ојлерова карактеристика геометријске фигуре у геометрији означава суму , где је T број темена фигуре, I број ивица а P број пљосни дате фигуре. Управо овај идентитет[6] је први доказао Ојлер.

Јасно, сваки троугао има карактеристику 1 (3 темена, 3 ивице и једна пљосан). Одавде следи да и свака раванска фигура има Ојлерову карактеристику 1 (свака фигура у равни се може триангулисати[7], тј. разложити на више мањих троуглова — сада се спајањем два троугла по заједничкој ивици карактеристика не мења, јер се број темена повећава за 1, број ивица за 2, а број пљосни за 1). Како се и сваки полиедар може разложити на ланац повезаних полиедара, то је карактеристика целог полиедра управо 2 (настављањем полиедара један на други се карактеристика не мења, слично као малопре, али се при додавању „последњег” полиедра број ивица и темена не мења, а добија се додатна пљосан).[8] Уопштено, за правилан полиедар са n „рупа” важи да му је карактеристика 2(1-n) (нпр. торус је карактеристике 0). Испод је дата табела неких конвексних и неких неконвексних тродимензионалних геометријских фигура са својим карактеристикама.

НазивСликаКонвексностБрој темена
(T)
Број ивица
(I)
Број пљосни
(P)
Карактеристика
Тетраедар конвексан4662
Хексаедар
(коцка)
конвексан81262
Октаедар конвексан61282
Додекаедар конвексан2030122
Икосаедар конвексан1230202
Тетрахемихексаедар конкаван61271
Октахемиоктаедар конкаван1224120
Мали звездасти додекаедар конкаван123012-6
Велики звездасти додекаедар конкаван2030122

Слично као у геометрији се дефинише Ојлерова карактеристика и у топологији. Испод се налази табела са неким тополошким облицима са својим карактеристикама.

НазивСликаКонвексностКарактеристика
Сфера конвексан2
Торус конкаван0
Дупли (дворупи)
торус
конкаван-2
Трорупи торус конкаван-4

Ојлерова карактеристика у теорији графова уреди

Пример планарног графа. Као и сви остали планарни графови, и овај је Ојлерове карактеристике 2.

Ојлерова карактеристика планарног графа G у теорији графова је резултат , где је V(G) скуп чворова графа G, E(G) скуп грана графа G, а f(G’) број области на које планарно утапање G’ графа G раздељује раван ℝ × ℝ својим гранама и чворовима.

Може се показати да сви планарни графови имају Ојлерову карактеристику 2 (у теорији графова је ово тврђење познато као Ојлерова теорема[9]). У општем случају ће важити, за произвољан граф G, , где је ω(G) број компоненти повезаности графа G.

Испод је дата табела са неколико графова и њиховим карактеристикама.

Граф GБрој чворова G
(|V(G)|)
Број грана G
(|E(G)|)
Број области G
(f(G'))
Број компоненти
повезаности G (ω(G))
Карактеристика GНапомена
66212
1218812Иако се граф на први поглед не чини планарним, ипак јесте (могуће је „извући” поједине гране у „спољашњост” како се не би секле са осталима).
21271034

Види још уреди

Референце уреди

  1. ^ Friedman, Michael (2018). A History of Folding in Mathematics: Mathematizing the Margins. Science Networks. Historical Studies. 59. Birkhäuser. стр. 71. ISBN 978-3-319-72486-7. doi:10.1007/978-3-319-72487-4. 
  2. ^ Cartan, Henri Paul; Eilenberg, Samuel (1956). Homological Algebra. Princeton mathematical series. 19. Princeton University Press. ISBN 9780674079779. OCLC 529171. 
  3. ^ Eilenberg, Samuel; Moore, J.C. (1965). Foundations of relative homological algebra. Memoirs of the American Mathematical Society number. 55. American Mathematical Society. ISBN 9780821812556. OCLC 1361982. 
  4. ^ Pellikka, M; S. Suuriniemi; L. Kettunen; C. Geuzaine (2013). „Homology and Cohomology Computation in Finite Element Modeling” (PDF). SIAM J. Sci. Comput. 35 (5): B1195—B1214. CiteSeerX 10.1.1.716.3210 . doi:10.1137/130906556. 
  5. ^ Arnold, Douglas N.; Richard S. Falk; Ragnar Winther (16. 5. 2006). „Finite element exterior calculus, homological techniques, and applications”. Acta Numerica. 15: 1—155. Bibcode:2006AcNum..15....1A. S2CID 122763537. doi:10.1017/S0962492906210018. 
  6. ^ „Euler's Formula”. Encyclopaedia Britannica. 
  7. ^ „Computational Geometry” (PDF). 
  8. ^ „Euler's Characteristic in Algebraic Topolgy”. San José State University. Архивирано из оригинала 25. 02. 2020. г. Приступљено 12. 02. 2020. 
  9. ^ „Euler's Formula”. 

Литература уреди


Спољашње везе уреди