Coulomb

The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI).[1][2] It is equal to the electric charge delivered by a 1 ampere current in 1 second and is defined in terms of the elementary charge e, at about 6.241509×1018 e.[2][1]

Coulomb
Charles-Augustin de Coulomb
General information
Unit systemSI
Unit ofelectric charge
SymbolC
Named afterCharles-Augustin de Coulomb
Conversions
1 C in ...... is equal to ...
   SI base units   As
   CGS units   ≘ 2997924580 statC
   Atomic units   6.241509×1018 e

Name and history edit

The coulomb is named after Charles-Augustin de Coulomb. As with every SI unit named for a person, its symbol starts with an upper case letter (C), but when written in full, it follows the rules for capitalisation of a common noun; i.e., coulomb becomes capitalised at the beginning of a sentence and in titles but is otherwise in lower case.[3]

By 1878, the British Association for the Advancement of Science had defined the volt, ohm, and farad, but not the coulomb.[4] In 1881, the International Electrical Congress, now the International Electrotechnical Commission (IEC), approved the volt as the unit for electromotive force, the ampere as the unit for electric current, and the coulomb as the unit of electric charge.[5] At that time, the volt was defined as the potential difference [i.e., what is nowadays called the "voltage (difference)"] across a conductor when a current of one ampere dissipates one watt of power.The coulomb (later "absolute coulomb" or "abcoulomb" for disambiguation) was part of the EMU system of units. The "international coulomb" based on laboratory specifications for its measurement was introduced by the IEC in 1908. The entire set of "reproducible units" was abandoned in 1948 and the "international coulomb" became the modern coulomb.[6]

Definition edit

The SI defines the coulomb by taking the value of the elementary charge e to be 1.602176634×10−19 C,[7] but was previously defined in terms of the force between two wires. The coulomb was originally defined, using the latter definition of the ampere, as 1 A × 1 s.[8] The 2019 redefinition of the ampere and other SI base units fixed the numerical value of the elementary charge when expressed in coulombs and therefore fixed the value of the coulomb when expressed as a multiple of the fundamental charge.

One coulomb is approximately 6241509074460762607.776 e (and is thus not an integer multiple of the elementary charge), where the number is the reciprocal of 1.602176634×10−19 C.[9] The coulomb is exactly

SI prefixes edit

Like other SI units, the coulomb can be modified by adding a prefix that multiplies it by a power of 10.

SI multiples of coulomb (C)
SubmultiplesMultiples
ValueSI symbolNameValueSI symbolName
10−1 CdCdecicoulomb101 CdaCdecacoulomb
10−2 CcCcenticoulomb102 ChChectocoulomb
10−3 CmCmillicoulomb103 CkCkilocoulomb
10−6 CμCmicrocoulomb106 CMCmegacoulomb
10−9 CnCnanocoulomb109 CGCgigacoulomb
10−12 CpCpicocoulomb1012 CTCteracoulomb
10−15 CfCfemtocoulomb1015 CPCpetacoulomb
10−18 CaCattocoulomb1018 CECexacoulomb
10−21 CzCzeptocoulomb1021 CZCzettacoulomb
10−24 CyCyoctocoulomb1024 CYCyottacoulomb
10−27 CrCrontocoulomb1027 CRCronnacoulomb
10−30 CqCquectocoulomb1030 CQCquettacoulomb
Common multiples are in bold face.

Conversions edit

  • The magnitude of the electrical charge of one mole of elementary charges (approximately 6.022×1023, the Avogadro number) is known as a faraday unit of charge (closely related to the Faraday constant). One faraday equals 9.648533212...×104 coulombs.[10] In terms of the Avogadro constant (NA), one coulomb is equal to approximately 1.036×10−5 mol × NA elementary charges.
  • A capacitor of one farad can hold one coulomb at a drop of one volt.
  • One ampere hour equals 3600 C, hence 1 mA⋅h = 3.6 C.
  • One statcoulomb (statC), the obsolete CGS electrostatic unit of charge (esu), is approximately 3.3356×10−10 C or about one-third of a nanocoulomb.

In everyday terms edit

  • The charges in static electricity from rubbing materials together are typically a few microcoulombs.[11]
  • The amount of charge that travels through a lightning bolt is typically around 15 C, although for large bolts this can be up to 350 C.[12]
  • The amount of charge that travels through a typical alkaline AA battery from being fully charged to discharged is about 5 kC = 5000 C ≈ 1400 mA⋅h.[13]
  • A typical smartphone battery can hold 10800 C ≈ 3000 mA⋅h.

See also edit

Notes and references edit