Template:Infobox nihonium

Nihonium, 113Nh
Nihonium
Pronunciation/nɪˈhniəm/ (nih-HOH-nee-əm)
Mass number[286]
Nihonium in the periodic cairt
HydrogenHelium
LithiumBerylliumBoronCarbonNitrogenOxygenFluorineNeon
SodiumMagnesiumAluminiumSiliconPhosphorusSulfurChlorineArgon
PotassiumCalciumScandiumTitaniumVanadiumChromiumManganeseAirnCobaltNickelCapperZincGalliumGermaniumArsenicSeleniumBromineKrypton
RubidiumStrontiumYttriumZirconiumNiobiumMolybdenumTechnetiumRutheniumRhodiumPalladiumSiller (element)CadmiumIndiumTinAntimonyTelluriumIodineXenon
CaesiumBariumLanthanumCeriumPraseodymiumNeodymiumPromethiumSamariumEuropiumGadoliniumTerbiumDysprosiumHolmiumErbiumThuliumYtterbiumLutetiumHafniumTantalumTungstenRheniumOsmiumIridiumPlatinumGowdMercur (element)ThalliumLeid (element)BismuthPoloniumAstatineRadon
FranciumRadiumActiniumThoriumProtactiniumUraniumNeptuniumPlutoniumAmericiumCuriumBerkeliumCaliforniumEinsteiniumFermiumMendeleviumNobeliumLawrenciumRutherfordiumDubniumSeaborgiumBohriumHassiumMeitneriumDarmstadtiumRoentgeniumCoperniciumUnuntriumFleroviumUnunpentiumLivermoriumUnunseptiumUnunoctium
Tl

Nh

(Uhs)
coperniciumnihoniumflerovium
Atomic nummer (Z)113
Groupgroup 13 (boron group)
Periodperiod 7
Blockp-block
Element category  Unkent chemical properties, but probably a post-transeetion metal
Electron confeeguration[Rn] 5f14 6d10 7s2 7p1 (predictit)[1]
Electrons per shell2, 8, 18, 32, 32, 18, 3 (predictit)
Pheesical properties
Phase at STPsolid (predicted)[1][2][3]
Meltin pynt700 K ​(430 °C, ​810 °F) (predictit)[1]
Bylin pynt1430 K ​(1130 °C, ​2070 °F) (predictit)[1][4]
Density (near r.t.)16 g/cm3 (predictit)[4]
Heat o fusion7.61 kJ/mol (extrapolatit)[3]
Heat o vapourisation130 kJ/mol (predictit)[2][4]
Atomic properties
Oxidation states(−1), (+1), (+3), (+5) (predicted)[1][4][5]
Ionisation energies
  • 1st: 704.9 kJ/mol (predictit)[1]
  • 2nd: 2240 kJ/mol (predictit)[4]
  • 3rd: 3020 kJ/mol (predictit)[4]
  • (more)
Atomic radiusempirical: 170 pm (predictit)[1]
Covalent radius172–180 pm (extrapolatet)[3]
Ither properties
Naitural occurrencesynthetic
Creestal structurhexagonal close-packed (hcp)
Hexagonal close-packed creestal structur for nihonium

(extrapolatit)[6]
CAS Nummer54084-70-7
History
NaminEfter Japan (Nihon in Japanese)
DiskiveryRiken (Japan, first undisputit claim 2004)
JINR (Roushie) an Livermore (US, first annooncement 2003)
Main isotopes o nihonium
Iso­topeAbun­danceHauf-life (t1/2)Decay modePro­duct
290Nh[7]syn2 s?α286Rg
287Nh[8]syn5.5 s?α283Rg
286Nhsyn9.5 sα282Rg
285Nhsyn4.2 sα281Rg
284Nhsyn0.91 sα280Rg
EC284Cn
283Nhsyn75 msα279Rg
282Nhsyn73 msα278Rg
278Nhsyn1.4 msα274Rg
| references
style="text-align:left"|
incalc from Cdiffreportref
C430
K700703-3delta
F8108064delta
WD Edit this at Wikidata
inputC: 430, K: 700, F: 810
comment(predictit)[1]
style="text-align:left"|
incalc from Cdiffreportref
C1130
K1430140030delta
F207020700
WD1130 Celsius Edit this at Wikidata
inputC: 1130, K: 1430, F: 2070
comment(predictit)[1][4]
Nihonium
Cn ←
iso
113
Nh E
→ Fl
v · e

References

  1. a b c d e f g h Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  2. a b Seaborg, Glenn T. (c. 2006). "transuranium element (chemical element)". Encyclopædia Britannica. Retrieved 16 Mairch 2010. Italic or bold markup not allowed in: |publisher= (help)
  3. a b c Bonchev, Danail; Kamenska, Verginia (1981). "Predicting the Properties of the 113–120 Transactinide Elements". Journal of Physical Chemistry. 85 (9): 1177–1186. doi:10.1021/j150609a021.
  4. a b c d e f Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. 21: 89–144. doi:10.1007/BFb0116498. Retrieved 4 October 2013.
  5. Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". In Barysz, Maria; Ishikawa, Yasuyuki (eds.). Relativistic Methods for Chemists. Springer. pp. 63–67. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  6. Keller, O. L., Jr.; Burnett, J. L.; Carlson, T. A.; Nestor, C. W., Jr. (1969). "Predicted Properties of the Super Heavy Elements. I. Elements 113 and 114, Eka-Thallium and Eka-Lead". The Journal of Physical Chemistry. 74 (5): 1127−1134. doi:10.1021/j100700a029.
  7. Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; Burkhard, H. G.; Dahl, L.; Eberhardt, K.; Grzywacz, R.; Hamilton, J. H.; Henderson, R. A.; Kenneally, J. M.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Miernik, K.; Miller, D.; Moody, K. J.; Morita, K.; Nishio, K.; Popeko, A. G.; Roberto, J. B.; Runke, J.; Rykaczewski, K. P.; Saro, S.; Scheidenberger, C.; Schött, H. J.; Shaughnessy, D. A.; Stoyer, M. A.; Thörle-Popiesch, P.; Tinschert, K.; Trautmann, N.; Uusitalo, J.; Yeremin, A. V. (2016). "Review of even element super-heavy nuclei and search for element 120". The European Physics Journal A. 2016 (52). Bibcode:2016EPJA...52..180H. doi:10.1140/epja/i2016-16180-4.
  8. Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; Burkhard, H. G.; Dahl, L.; Eberhardt, K.; Grzywacz, R.; Hamilton, J. H.; Henderson, R. A.; Kenneally, J. M.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Miernik, K.; Miller, D.; Moody, K. J.; Morita, K.; Nishio, K.; Popeko, A. G.; Roberto, J. B.; Runke, J.; Rykaczewski, K. P.; Saro, S.; Schneidenberger, C.; Schött, H. J.; Shaughnessy, D. A.; Stoyer, M. A.; Thörle-Pospiech, P.; Tinschert, K.; Trautmann, N.; Uusitalo, J.; Yeremin, A. V. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". In Peninozhkevich, Yu. E.; Sobolev, Yu. G. (eds.). Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei. Exotic Nuclei. pp. 155–164. ISBN 9789813226555.