Перестановка

(перенаправлено с «Чётность перестановки»)

В комбинаторике перестано́вкой заданного конечного множества (все элементы различны) называется произвольный упорядоченный набор всех элементов (без повторений). Группируя эти элементы в разном порядке, можно получить различные перестановки. Всего из множества с элементами можно получить (-факториал) различных перестановок (см. рисунок)[1][2].

6 перестановок трёх шаров;

Перестановка является частным случаем размещения, когда выбираются все элементы множества[1].

Подстановка править

Перестановку можно рассматривать как функцию, которая каждому элементу некоторой начальной перестановки сопоставляет соответствующий по номеру элемент данной перестановки. Такую функцию часто называют подстановкой[3]. Перестановка множества может быть наглядно представлена в виде таблицы:

где и .

Пример: перестановка элементов множества в обратном порядке:

Инверсией в перестановке называется всякая пара индексов такая, что и . Чётность числа инверсий в перестановке определяет чётность перестановки. Пример:

Здесь элементы 2 и 3 образуют инверсию.

Связанные определения править

Носитель перестановки  — это подмножество множества , определяемое как

Неподвижной точкой перестановки является всякая неподвижная точка отображения , то есть элемент множества Множество всех неподвижных точек перестановки является дополнением её носителя в .

Специальные типы перестановок править

  • Тождественная перестановка — перестановка которая каждый элемент отображает в себя:
  • Инволюция — перестановка которая является обратной самой себе, то есть
  • Беспорядок — перестановка без неподвижных точек.
  • Циклом длины называется такая подстановка которая тождественна на всём множестве кроме подмножества и Обозначается .
  • Транспозиция — перестановка элементов множества , которая меняет местами два элемента. Транспозиция является циклом длины 2.

Произведения циклов и знак перестановки править

Перестановку можно представить в виде ориентированного графа, где вершинами являются элементы конечного множества, а связи между вершинами описывают переход. В случае, , для элемента рисуется петля. Таким образом, получается граф, где из каждой вершины выходит и входит одно ребро. Пример перестановки представленной в виде ориентированного графа можно увидеть на изображении справа.

Пример перестановки, представленной в виде ориентированного графа

Таким образом, любая перестановка может быть разложена в произведение (композицию) непересекающихся циклов длины , причём единственным образом с точностью до порядка следования циклов в произведении. Например:

Часто также считают, что неподвижные точки перестановки представляют собой самостоятельные циклы длины 1, и дополняют ими цикловое разложение перестановки. Для приведённого выше примера таким дополненным разложением будет . Число циклов разной длины, а именно набор чисел , где  — это число циклов длины , определяет цикловую структуру перестановки. При этом величина равна длине перестановки, а величина равна общему числу циклов. Число перестановок из элементов с циклами даётся числом Стирлинга первого рода без знака .

Любой цикл может быть разложен в произведение (не обязательно непересекающихся) транспозиций. При этом цикл длины 1 (являющийся по сути тождественной перестановкой ) можно представить как пустое произведение[англ.] транспозиций или, например, как квадрат любой транспозиции: Цикл длины можно разложить в произведение транспозиций следующим образом:

Разложение циклов на произведение транспозиций не является единственным:

Таким образом, любая перестановка может быть разложена в произведение транспозиций. Хотя это можно сделать многими способами, чётность числа транспозиций во всех таких разложениях одинакова. Это позволяет определить знак перестановки (чётностью перестановки или сигнатурой перестановки) как:

где  — число транспозиций в каком-то разложении . При этом называют чётной перестановкой, если , и нечётной перестановкой, если .

Эквивалентно, знак перестановки определяется её цикловой структурой: знак перестановки из элементов, состоящий из циклов, равен

.

Знак перестановки также может быть определён через число инверсий в :

.

Вариации и обобщения править

В теории групп под перестановкой произвольного множества подразумевается биекция этого множества на себя. Как синоним слову «перестановка» в этом смысле некоторые авторы используют слово подстановка. (Другие авторы подстановкой называют (приведённый выше) наглядный способ записи перестановки. Более существенное отличие состоит в том, что подстановка — это непосредственно функция, а перестановка — результат применения этой функции к элементам последовательности.)

Композиция определяет операцию произведения на перестановках одной длины: Относительно этой операции множество перестановок из элементов образует группу, которую называют симметрической и обычно обозначают .

Любая конечная группа порядка изоморфна некоторой подгруппе симметрической группы (теорема Кэли). При этом каждый элемент сопоставляется с перестановкой , задаваемой на элементах тождеством где  — групповая операция в .

Перестановки с повторением править

Рассмотрим элементов различных типов, причём в каждом типе все элементы одинаковы. Тогда перестановки из всех этих элементов с точностью до порядка следования однотипных элементов называются перестановками с повторением.Если  — число элементов -го типа, то и число всевозможных перестановок с повторениями равно мультиномиальному коэффициенту

Перестановку с повторениями можно также рассматривать как перестановку мультимножества мощности .

Случайная перестановка править

Случайной перестановкой называется случайный вектор все элементы которого принимают натуральные значения от 1 до и при этом вероятность совпадения любых двух элементов равна 0.

Независимой случайной перестановкой называется такая случайная перестановка , для которой:

для некоторых таких, что:

Если при этом не зависят от , то перестановку называют одинаково распределённой. Если же нет зависимости от , то есть то называют однородной.

См. также править

Примечания править

  1. 1 2 Выгодский М. Я. Справочник по элементарной математике. — М.: АСТ, 2006. — С. 293—294. — 509 с. — ISBN 5-17-009554-6.
  2. Виленкин Н.Я. Глава III. Комбинаторика кортежей и множеств. Размещения с повторениями // Популярная комбинаторика. — М.: Наука, 1975. — С. 80. — 208 с. Архивировано 14 октября 2010 года.
  3. Математическая энциклопедия, 1984.

Литература править

Ссылки править

🔥 Top keywords: Заглавная страницаЯндексСлужебная:ПоискСу-57YouTubeГодовщины свадьбыЗаворотнюк, Анастасия ЮрьевнаОбодзинский, Валерий ВладимировичЗверев, АлександрКараганов, Сергей АлександровичАлькарас, КарлосВыборы в Европейский парламент (2024)Список умерших в 2024 годуЧемпионат Европы по футболу 2024РоссияПопков, Михаил ВикторовичЧернышёв, Пётр АндреевичГреф, Герман ОскаровичЧикатило, Андрей РомановичПушкин, Александр СергеевичFallout (серия игр)КлеопатраПутин, Владимир ВладимировичИмавов, Нассурдин АбдулазимовичАзбука МорзеБитва экстрасенсовРаспутин, Григорий ЕфимовичБарабаш, Юрий Владиславович9 июняМинистерство неджентльменских делВторжение России на Украину (с 2022)WildberriesСписок фильмов кинематографической вселенной MarvelTelegramХристианско-демократический союз ГерманииАльтернатива для ГерманииВКонтактеВодительское удостоверение в Российской ФедерацииЖукова, Софья Ивановна