Мазевые основы

Мазевые основы (лат. Basis Unguenti, англ. Ointment base или реже англ. Vehicle of an ointment) — носители лекарственного вещества (ЛВ) в мазях. Они определяют скорость и степень его всасывания, а также влияют на процесс его транспортировки через кожу, в связи с чем способствуют проявлению оптимального терапевтического эффекта мазей. Согласно фармакопее, в случае отсутствия указаний в рецепте, основу подбирают с учётом физико-химической совместимости компонентов мазей и её назначением[1].

Требования, предъявляемые к основам править

  1. Соответствие назначению мазей:
    Например, основы для защитных мазей должны быстро высыхать и плотно прилегать к поверхности кожи. Основа для поверхностных мазей не должна способствовать всасыванию ЛВ. Основа для мазей резорптивного действия должна обеспечивать высвобождение и всасывание ЛВ через кожу.
  2. Должна обеспечивать необходимую концентрацию ЛВ и массу мази;
  3. Должна обладать оптимальными реологическими свойствами;
  4. Должна быть химически индифферентной, устойчивой к действию тепла, света, воздуха и влаги;
  5. Должна обладать физико-химической и антимикробной стабильностью;
  6. Должна быть биологически безвредной, то есть не оказывать аллергического, раздражающего и сенсибилизирующего воздействия;
  7. Должна иметь нейтральную реакцию, так как наружный слой эпидермиса имеет кислую реакцию среды, которая препятствует размножению микроорганизмов;
  8. Должна легко наноситься и удаляться с места нанесения;

Классификация мазевых основ править

I. По источнику получения: Природные (БЖУ), Полусинтетические (гидрогенизированные жиры, производные целлюлозы, растворы альгинатов) и Синтетические (силиконы, ПЭО, ПВП)
II. По химическому составу: Эфиры глицерина, Углеводороды, Неорганические соединения, Полисахариды

Недостатки таких видов классификаций в том, что они не определяют технологию мазей.

III. По способности взаимодействовать с водой:

  1. Гидрофобные;
  2. Гидрофильные;
  3. Дифильные:
    1. Абсорбционные;
    2. Эмульсионные:
      1. I рода (основа типа м/в);
      2. II рода (основа типа в/м);

Это наиболее рациональная классификация, так как она четко характеризует свойства основ и помогает сделать правильный выбор основы в зависимости от свойств ЛВ и определить способ их взаимодействия.

Гидрофобные основы править

В группе гидрофобных основ объединены основы и их компоненты, имеющие различную химическую природу и обладающие ярко выраженной гидрофобностью.

Жировые основы править

Животные жиры

Применяют в качестве мазевых основ ещё с древних времён и до сих пор. По химической природе являются триглицеридами ВЖК. По свойствам близкие к жировым выделениям кожи. Кроме того, жиры содержат неомыляемые компоненты, среди которых преобладают стерины. Животные жиры содержат холестерин, а растительные — фитостерин.Из животных жиров наиболее распространён Свиной жир — Adeps suillus seu Axungia porcina (depurata). Это смесь триглицеридов стеариновой, пальмитиновой, олеиновой и линолевой кислот. Содержит также небольшое количество холестерина. Это белая масса практически без запаха. Температура плавления = 34-36 °C.Достоинства: Мази на свином жире хорошо всасываются кожей, не оказывают раздражающего действия и легко удаляются мыльной водой.Свиной жир легко смешивается и сплавляется с другими жирами, восками, углеводородами, смолами и жирными кислотами. Благодаря содержанию стеарина, свиной жир инкорпорирует до 25 % воды, 70 % спирта, 35 % глицерина, образуя с ними стабильные эмульсионные системы.Недостатки: Под влиянием света, тепла, воздуха и м/о прогоркает, приобретая резкий, неприятный запах, кислую реакцию и раздражающее действие.Твёрдый свиной жир способен к окислению, он не пригоден для изготовления мазей с окислителями. Реагирует с веществами щелочного характера, солями тяжёлых металлов, цинком, медью и висмутом — при этом образуются мыла. Мази темнеют, становятся плотными и вязкими.

Растительные жиры

Большая их часть имеет жидкую консистенцию, что связано с высоким содержанием глицеридов непредельных кислот. В связи с этим, растительные жиры могут использоваться только как компоненты мазевых основ. По своей устойчивости, растительные жиры аналогичны животным — прогоркают при длительном хранении, но благодаря содержанию фитонцидов, они более устойчивы к воздействию микроорганизмов. Наиболее широко применяются подсолнечное, арахисовое, оливковое, персиковое, миндальное, абрикосовое масла.Достоинства: биологическая безвредность, фармакологическая индифферентность, проникают через эпидермис.

Гидрогенизированные жиры

Полусинтетический продукт, получаемый каталитическим гидрированием жирных растительных масел. При этом непредельные глицериды жирных масел переходят в предельные, мягкой консистенции. В зависимости от степени гидрогенизации можно получить жиры различной консистенции. Обладая положительными качествами животных жиров, они характеризуются большей устойчивостью.

Гидрожир или «саломас» (сало из масла) — Adeps hydrogenisatus
Его получают из рафинированных растительных масел. По свойствам подобен жирам, но имеет более вязкую консистенцию. В качестве основы используют его сплав с растительным маслом, называемый «растительным салом».
Комбижир — Adeps compositus
Состоит из пищевого саломаса, растительного масла и свиного жира. Зарубежные фармакопеи разрешают к применению гидрогенизированное арахисовое и касторовое масла.
Воски

Это сложные эфиры жирных кислот и высших одноатомных спиртов. В качестве компонента основ используют воск пчелиный — Cera flava, представляющий собой твёрдую ломкую массу тёмно-жёлтого цвета с температурой плавления = 63-65 °C. Воски химически инертны. Хорошо сплавляются с жирами и углеводами. Применяются для уплотнения мазевых основ.

Спермацет — Cetaceum

Это сложный эфир жирных кислот и цетилового спирта. Твёрдая жирная масса с температурой плавления = 42-54 °C. Легко сплавляется с жирами, углеводородами и широко применяется в технологии кремов и косметических мазей.

Углеводородные основы править

Углеводороды являются продуктами переработки нефти. Достоинства: химическая индифферентность, стабильность и совместимость с большинством лекарственных веществ. Наиболее широкое применение находят следующие основы:

Вазелин — Vaselinum

Смесь жидких, полужидких и твёрдых углеводородов с С17 ÷ С35. Вязкая масса, тянущаяся нитями, белого или желтоватого цвета. Температура плавления = 37-50 °C. Смешивается с жирами, жирными маслами (за исключением касторового). Инкорпорирует до 5 % воды за счёт вязкости. Не всасывается кожей.

Парафин — Parafinum

Смесь предельных высокоплавких углеводородов с температурой плавления 50-57 °C. Белая жирная на ощупь масса. Используется как уплотнитель мазевых основ.

Вазелиновое масло — Oleum vaselini seu Parafinum liquidum

Смесь предельных углеводородов с С10 ÷ С15. Бесцветная маслянистая жидкость, смягчающая мазевые основы. Смешивается с жирами и маслами (за исключением касторового) и обладает всеми недостатками вазелина.

Озокерит

Воскоподобный минерал темно-коричневого цвета с запахом нефти. В химическом отношении это смесь высокомолекулярных углеводородов. Содержит серу и смолы. Температура плавления 50-65 °C. Применяется как уплотнитель.

Церезин — Ceresinum

Очищенный озокерит. Аморфная бесцветная ломкая масса с температурой плавления 68-72 °C. Применяется как уплотнитель.

Искусственный вазелин — Vaselinum artificiale

Сплавы парафина, озокерита, церезина в различных соотношениях. Наиболее качественным является искусственный вазелин с церезином.

Нафталанская нефть — Naphthalanum liquidum rafinatum

Густая сиропооразная жидкость чёрного цвета с зеленоватой флюоресценцией и специфическим запахом. Хорошо смешивается с жирными маслами и глицерином. Оказывает местное анестезирующее и антимикробное действие.

Полиэтиленовые или полипропиленовые гели

Представляют собой сплав низкомолекулярного полиэтилена или полипропилена с минеральными маслами. Достаточно индифферентны, совместимы с рядом лекарственных веществ.

Силикон-содержащие безводные основы править

Их обязательным компонентом являются поли-органо-силоксановые жидкости (ПОСЖ). ПОСЖ имеют названия: эсилон-4 (степень конденсации=5) или эсилон-5 (степень конденсации=12). Их применяют как составной компонент сложных мазевых основ. Образуют однородные сплавы с вазелином или ланолином безводным. Хорошо смешиваются с жирными и минеральными маслами.

Силиконовые основы получают двумя способами: сплавлением силиконовой жидкости с другими гидрофобными компонентами, либо загущением силиконовой жидкости аэросилком. В качестве основы используется эсилон-аэросильная основа состава: эсилон-5 — 84 части, аэросила — 16 частей. По внешнему виду это бесцветный прозрачный гель.

Достоинства: высокая стабильность, отсутствие раздражающего действия, не нарушает физиологических функций кожи
Недостатки: медленно высвобождает лекарственные вещества, может использоваться только для мазей поверхностного действия. Также вызывает поражение конъюнктивы глаза, поэтому не может использоваться в глазных мазях.

Гидрофильные основы править

Гидрофильность — способность смешиваться с водой или растворяться в ней. В эту группу объединены основы, в составе которых отсутствуют жировые компоненты.

Достоинства:Недостатки:
 — возможность введения значительного количества водных растворов ЛВ
 — легко высвобождают ЛВ и обеспечивают их высокую биологическую доступность
 — легко удаляются с места нанесения и смываются водой
 — микробная контаминация (не относится к ПЭО)
 — быстро высыхают (не относится к ПЭО)
 — не совместимы с рядом ЛВ
 — подвержены синерезису (явление, при котором выделяется жидкая фаза)

Классификация:
I. По способности взаимодействовать с водой:

1) Способные к набуханию с последующим растворением в воде (ПЭО, эфиры целлюлозы, крахмал, желатин)
2) Способные к набуханию и нерастворимые в воде (фитостерин, бетониты, РАП)

II. По происхождению:

1) Гели высокополекулярных углеводов, белков: крахмал, эфиры целлюлозы, желатин, коллаген
2) Гели синтетических ВМС: ПЭО, РАП
3) Гели неорганических веществ: бетониты

III. По физико-химической природе:

1) Системы типа гелей
2) Студни и коллоидные системы

Характеризуются меньшей структурной прочностью и способны разжижаться при механическом воздействии.

Представители:

  • Гели крахмала
  • Желатино-глицериновый гель
  • Коллагеновые гели
  • Фитостерин
  • Гели микробных полисахаридов
  • Эфиры целлюлозы
  • Полиэтиленоксиды (ПЭО)
  • РАП
  • Бентониты
  • Гели поливинил пиралидона (ПВП)
  • Гели поливинилового спирта (ПВС)

Дифильные основы править

Это искусственно созданные системы, обладающие одвременно гидрофильными и гидрофобными свойствами. Обязательным компонентом является эмульгатор (ПАВ), который обеспечивает высвобождение и всасывание ЛВ. Дифильные основы способны инкорпорировать как жиро-, так и водорастворимые вещества. Обладают мягкой консистенцией и легко распределяются по поверхности кожи и слизистых оболочек. Делятся на 2 группы — абсорбционные и эмульсионные.

При добавлении к абсорбционной основе воды, образуются эмульсионные основы. В зависимости от природы основы, физико-химических свойств ПАВ и величины гидрофильно-липофильного баланса (ГЛБ), эмульсионные основы делят на две группы:

1) Эмульсионные основы I рода, типа м/в:

Образуются при определённых соотношениях гидрофильных компонентов с ПАВ (ГЛБ=13÷15) и водой. Например, основы, содержащие эмульгаторы твин-80, эмульгатор № 1, мыла одновалентных металлов.

2) Эмульсионные основы II рода типа в/м:

Состоят из гидрофобных веществ с ПАВ (ГЛБ=3÷6) и воды. Например:
  • основа Кутумовой: вазелин (6) + эмульгатор Т-2 (1) + вода (3)
  • сплав вазелина с ланолином водным
  • эмульсионная основа с пентолом: вазелин (38) + Pentholi (2) + вода (60)

Эмульгаторы, стабилизирующие эмульсии I рода править

Неионогенные эмульгаторы: твин-80
Ионогенные эмульгаторы: Анион-активные ПАВ, Эмульгатор № 1, Жиросахара

Эмульгаторы, стабилизирующие эмульсии II рода править

Получают из промывных вод овечьей шерсти. в ГФ-Х есть 2 статьи на Lanolinum hydricum и на Lanolinum anhydricum. По химической структуре это смесь около 70-ти веществ различного строения — смесь эфиров ВЖК с высшими жирными и циклическими спиртами, свободные спирты и свободные кислоты, тритерпены и проч. Широко применяется в технологии мазей.

А. Ланолин безводный:
Густая вязкая масса буро-желтого цвета со специфическим запахом. Температура плавления 36-42 °C. Практически нерастворим в воде. Легко растворим в жирах, хлороформе и эфире[2].
Достоинства: Легко сплавляется с жирами, углеводами, силиконовыми жидкостями, восками. Инкорпорирует (вбирает в себя) до 180 % воды, 140 % глицерина, до 40 % этилового спирта (большая эмульгирующая способность). Химически индифферентен. Устойчив к действию тепла и света. Хорошо всасывается в кожу, но хуже чем свиной жир. Водополгощающая способность его увеличивается при сплавлении его с гидрофильными компонентами. В аптечной технологии чаще всего используется ланолин водный.
Б. Ланолин водный:
Содержит до 30 % воды. Это беловато-желтоватая масса, менее вязкая. Если в рецепте не указано какой ланолин брать, то используют водный[3].
Недостатки: закупоривает волосяные фолликулы, вызывает аллергические реакции (поэтому он исключен из ГФ США и ряда стран ЕС[4]), обладает большей липкостью, вызывает дерматозы и повышение рН кожи.

Для улучшения свойств ланолина используют следующие его производные:

  • гидрированный ланолин (гидролин)
  • ацетилированный ланолин
  • полиокси-этилированный ланолин (водлан)
  • жидкий (лантрол) — у него водопоглощающая способность доходит до 300 %
  • СШВ (неомыляемая фракция ланолина) — смесь алифатических спиртов с С17÷С30. Содержит более 30 % холестерина, поэтому он обладает большей эмульгирующей способностью. Это твёрдая масса светло-жёлтого цвета, без запаха, хрупкая на холоде, но размягчается при комнатной температуре. Плавится при 58-60 °C.

Достоинства СШВ: большая эмульгирующая способность, отсутствие аллергического действия, легко высвобождает ЛВ, всасывается кожей, смешивается с водой до 180 % без разжижения, в мазях применяется в концентрации 6-8 %.

Высокомолекулярные алифатические спирты и их производные
  • Лауриловый: C18H25OH. Обладает высокой эмульгирующей способностью.
  • Цетиловый: C16H33OH. Твёрдое белое вещество, жирное на ощупь. Температура плавления 50 °C. Получают синтетическим путём. Широко используется в кремах. Хорошо сплавляется с жирами, углеводородами и образует эмульсии с 50 % воды.
  • Стеариловый: C18H37OH. Это наиболее перспективный эмульгатор для получения эмульсий II рода. Твёрдая белая масса, с температурой плавления 59 °C. По эмульгирующей способности близок к цетиловому спирту, поэтому часто используют смеси — цетостеариловый спирт.
  • Стероидный спирт (производное холестерина): C27H45OH. Инкорпорирует до 250 % воды.
Эфиры одно- и многоатомных спиртов
  • Производные глицерина и полиглицерин-неполярных сложных эфиров глицерина и жирных кислот моно-, ди- и триглицеридов:
Эмульгатор Т-1 и Т-2. Представляют собой смесь много- и дистеаратов триглицерина. Эмульгатор Т-2 используется в основе Кутумовой (серная мазь, скипидарная мазь, мазь с калия йодидом). Все эти мази нельзя готовить на чистом вазелине, однако ГФ также разрешает готовить их на свином жире.
  • Спены:
Сорбитан-олеат — смесь моно- и диэфиров сорбитана и олеиновой кислоты. Представляют собой вязкую жидкость светло-коричневого цвета, застывающую при комнатной температуре. Известна основа состава: вазелин (47,5), сорбитан олеат (2,5), вода (50).
  • Производные пента-эритрита и олеиновой кислоты:
Производные моно-, ди-, три- и тетра-эфиров четырёхатомного спирта пентаэритритов и олеиновой кислоты с преобладанием диэфиров. Пентол — вязкая масса светло-желтого цвета. Используется в основе состава: вазелин (38), пентол (2), вода (60).
Эмульсионные воски

Это сплав 70 % высокомолекулярных спиртов кашалотового жира и 30 % высокомолекулярных предельных спиртов (цетиловый и стеариловый).

Мыла

Масло-растворимые мыла поливалентных металлов: Ca, Mg, Zn и др. Чаще всего используют стеараты и олеаты магния. Известна основа состава: вазелин (25), олеат магния (до 5), вода очищенная (до 100). Мыла образуют нейтральные тонкодисперсные эмульсии с pH<8.

Примечания править

  1. Государственная Фармакопея XI изд., ЧФС «Мази»
  2. ГФ-Х, ЧФС «Ланолин безводный»
  3. ГФ-Х, ЧФС «Ланолин водный»
  4. Европейская Фармакопея, 2001 года
🔥 Top keywords: Заглавная страницаЯндексСлужебная:ПоискСу-57YouTubeГодовщины свадьбыЗаворотнюк, Анастасия ЮрьевнаОбодзинский, Валерий ВладимировичЗверев, АлександрКараганов, Сергей АлександровичАлькарас, КарлосВыборы в Европейский парламент (2024)Список умерших в 2024 годуЧемпионат Европы по футболу 2024РоссияПопков, Михаил ВикторовичЧернышёв, Пётр АндреевичГреф, Герман ОскаровичЧикатило, Андрей РомановичПушкин, Александр СергеевичFallout (серия игр)КлеопатраПутин, Владимир ВладимировичИмавов, Нассурдин АбдулазимовичАзбука МорзеБитва экстрасенсовРаспутин, Григорий ЕфимовичБарабаш, Юрий Владиславович9 июняМинистерство неджентльменских делВторжение России на Украину (с 2022)WildberriesСписок фильмов кинематографической вселенной MarvelTelegramХристианско-демократический союз ГерманииАльтернатива для ГерманииВКонтактеВодительское удостоверение в Российской ФедерацииЖукова, Софья Ивановна