Unsymmetrical dimethylhydrazine

Unsymmetrical dimethylhydrazine (UDMH; 1,1-dimethylhydrazine, heptyl or codenamed Geptil) is a chemical compound with the formula H2NN(CH3)2 that is used as a rocket propellant.[4] It is a colorless liquid, with a sharp, fishy, ammonia-like smell typical for organic amines. Samples turn yellowish on exposure to air and absorb oxygen and carbon dioxide. It is miscible with water, ethanol, and kerosene. In concentration between 2.5% and 95% in air, its vapors are flammable. It is not sensitive to shock. Symmetrical dimethylhydrazine (1,2-dimethylhydrazine) is also known but is not as useful.[5] UDMH can be oxidized in air to form many different substances, including toxic ones.[6][7][8]

Unsymmetrical dimethylhydrazine
Skeletal formula of unsymmetrical dimethylhydrazine with some implicit hydrogens shown
Skeletal formula of unsymmetrical dimethylhydrazine with some implicit hydrogens shown
Ball and stick model of unsymmetrical dimethylhydrazine
Ball and stick model of unsymmetrical dimethylhydrazine
Names
Preferred IUPAC name
1,1-Dimethylhydrazine[1]
Other names
Dimazine
Identifiers
3D model (JSmol)
605261
ChEBI
ChemSpider
ECHA InfoCard100.000.287 Edit this at Wikidata
EC Number
  • 200-316-0
KEGG
MeSHdimazine
RTECS number
  • MV2450000
UNII
UN number1163
  • InChI=1S/C2H8N2/c1-4(2)3/h3H2,1-2H3 ☒N
    Key: RHUYHJGZWVXEHW-UHFFFAOYSA-N ☒N
  • CN(C)N
Properties
H2NN(CH3)2
AppearanceColorless liquid
OdorAmmoniacal, fishy
Density791 kg m−3 (at 22 °C)
Melting point−57 °C; −71 °F; 216 K
Boiling point64.0 °C; 147.1 °F; 337.1 K
Miscible[2]
Vapor pressure13.7 kPa (at 20 °C)
1.4075
Thermochemistry
164.05 J K−1 mol−1
200.25 J K−1 mol−1
48.3 kJ mol−1
−1982.3 – −1975.1 kJ mol−1
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Carcinogen, spontaneously ignites on contact with oxidizers
GHS labelling:
GHS02: Flammable GHS05: Corrosive GHS06: Toxic GHS08: Health hazard GHS09: Environmental hazard
Danger
H225, H301, H314, H331, H350, H411
P210, P261, P273, P280, P301+P310
NFPA 704 (fire diamond)
Flash point−10 °C (14 °F; 263 K)
248 °C (478 °F; 521 K)
Explosive limits2–95%
Lethal dose or concentration (LD, LC):
  • 122 mg kg−1 (oral, rat)
  • 1.06 g kg−1 (dermal, rabbit)
  • 252 ppm (rat, 4 hr)
  • 172 ppm (mouse, 4 hr)
  • 392 ppm (hamster, 4 hr)
  • 3580 ppm (dog, 15 min)
  • 1410 ppm (rat, 1 hr)
  • 981 ppm (dog, 1 hr)[3]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.5 ppm (1 mg/m3) [skin][2]
REL (Recommended)
Ca C 0.06 ppm (0.15 mg/m3) [2 hr][2]
IDLH (Immediate danger)
Ca [15 ppm][2]
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Production

edit

UDMH is produced industrially by two routes.[5] Based on the Olin Raschig process, one method involves reaction of monochloramine with dimethylamine giving 1,1-dimethylhydrazinium chloride:

(CH3)2NH + NH2Cl → (CH3)2NNH2 ⋅ HCl

In the presence of suitable catalysts, acetylhydrazine can be N-dimethylated using formaldehyde and hydrogen to give the N,N-dimethyl-N'-acetylhydrazine, which can subsequently be hydrolyzed:

CH3C(O)NHNH2 + 2CH2O + 2H2 → CH3C(O)NHN(CH3)2 + 2H2O
CH3C(O)NHN(CH3)2 + H2O → CH3COOH + H2NN(CH3)2

Uses

edit

UDMH is often used in hypergolic rocket fuels as a bipropellant in combination with the oxidizer nitrogen tetroxide and less frequently with IRFNA (inhibited red fuming nitric acid) or liquid oxygen.[9] UDMH is a derivative of hydrazine and is sometimes referred to as a hydrazine. As a fuel, it is described in specification MIL-PRF-25604 in the United States.[10]

UDMH is stable and can be kept loaded in rocket fuel systems for long periods, which makes it appealing for use in many liquid rocket engines, despite its cost. In some applications, such as the OMS in the Space Shuttle or maneuvering engines, monomethylhydrazine is used instead due to its slightly higher specific impulse.In some kerosene-fueled rockets, UDMH functions as a starter fuel to start combustion and warm the rocket engine prior to switching to kerosene.

UDMH has higher stability than hydrazine, especially at elevated temperatures, and can be used as its replacement or together in a mixture. UDMH is used in many European, Russian, Indian, and Chinese rocket designs. The Russian SS-11 Sego (aka 8K84) ICBM, SS-19 Stiletto (aka 15A30) ICBM, Proton, Kosmos-3M, R-29RMU2 Layner, R-36M, Rokot (based on 15A30) and the Chinese Long March 2F are the most notable users of UDMH (which is referred to as "heptyl" (codename from Soviet era)[citation needed] by Russian engineers[11]). The Titan, GSLV, and Delta rocket families use a mixture of 50% hydrazine and 50% UDMH, called Aerozine 50, in different stages.[12] There is speculation that it is the fuel used in the ballistic missiles that North Korea has developed and tested in 2017.[13]

Safety

edit

Hydrazine and its methyl derivatives are toxic but LD50 values have not been reported.[14] It is a precursor to dimethylnitrosamine, which is carcinogenic.[15]According to scientific data, usage of UDMH in rockets at Baikonur Cosmodrome has had adverse effects on the environment.[16]

See also

edit

References

edit
edit