Isotopes of thallium

(Redirected from Thallium-205)

Thallium (81Tl) has 41 isotopes with atomic masses that range from 176 to 216. 203Tl and 205Tl are the only stable isotopes and 204Tl is the most stable radioisotope with a half-life of 3.78 years. 207Tl, with a half-life of 4.77 minutes, has the longest half-life of naturally occurring Tl radioisotopes. All isotopes of thallium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Isotopes of thallium (81Tl)
Main isotopes[1]Decay
abun­dancehalf-life (t1/2)modepro­duct
201Tlsynth3.0421 dε201Hg
203Tl29.5%stable
204Tlsynth3.78 yβ204Pb
ε + β+204Hg
205Tl70.5%stable
Standard atomic weight Ar°(Tl)

Thallium-202 (half-life 12.23 days) can be made in a cyclotron[4] while thallium-204 (half-life 3.78 years) is made by the neutron activation of stable thallium in a nuclear reactor.[5]

In the fully ionized state, the isotope 205Tl becomes beta-radioactive, decaying to 205Pb,[6] but 203Tl remains stable.

205Tl is the decay product of bismuth-209, an isotope that was once thought to be stable but is now known to undergo alpha decay with an extremely long half-life of 2.01×1019 y.[7] 205Tl is at the end of the neptunium series decay chain.

The neptunium series decay chain, which ends at 205Tl.

List of isotopes

edit
Nuclide[8]
[n 1]
Historic
name
ZNIsotopic mass (Da)[9]
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4]Normal proportionRange of variation
176Tl[10]8195176.00059(21)#2.4+1.6
−0.7
 ms
p (~63%)175Hg(3−, 4−, 5−)
α (~37%)172Au
176mTl~671 keV290+200
−80
 μs
p (~50%)175Hg
α (~50%)172mAu
177Tl[11]8196176.996427(27)18(5) msα (73%)173Au(1/2+)
p (27%)176Hg
177mTl807(18) keV230(40) μsp (51%)176Hg(11/2−)
α (49%)173Au
178Tl[12]8197177.99490(12)#255(9) msα (62%)174Au(4-,5-)
β+ (38%)178Hg
β+, SF (0.15%)(various)
179Tl[13]8198178.99109(5)437(9) msα (60%)175Au(1/2+)
β+ (40%)179Hg
179m1Tl825(10)# keV1.41(2) msα175Au(11/2−)
IT (rare)179Tl
β+ (rare)179Hg
179m2Tl904.5(9) keV119(14) nsIT179Tl(9/2−)
180Tl[14]8199179.98991(13)#1.09(1) sβ+ (93%)180Hg4-#
α (7%)176Au
β+, SF (0.0032%)100Ru, 80Kr[15]
181Tl[16]81100180.986257(10)2.9(1) sβ+ (91.4%)181Hg1/2+#
α (8.6%)177Au
181mTl834.9(4) keV1.40(3) msIT (99.60%)181Tl(9/2−)
α (0.40%)177Au
182Tl81101181.98567(8)2.0(3) sβ+ (96%)182Hg2−#
α (4%)178Au
182m1Tl100(100)# keV2.9(5) sα178Au(7+)
β+ (rare)182Hg
182m2Tl600(140)# keV10−
183Tl81102182.982193(10)6.9(7) sβ+ (98%)183Hg1/2+#
α (2%)179Au
183m1Tl630(17) keV53.3(3) msIT (99.99%)183Tl9/2−#
α (.01%)179Au
183m2Tl976.8(3) keV1.48(10) μs(13/2+)
184Tl81103183.98187(5)9.7(6) sβ+184Hg2−#
184m1Tl100(100)# keV10# sβ+ (97.9%)184Hg7+#
α (2.1%)180Au
184m2Tl500(140)# keV47.1 msIT (99.911%)(10−)
α (.089%)180Au
185Tl81104184.97879(6)19.5(5) sα181Au1/2+#
β+185Hg
185mTl452.8(20) keV1.93(8) sIT (99.99%)185Tl9/2−#
α (.01%)181Au
β+185Hg
186Tl81105185.97833(20)40# sβ+186Hg(2−)
α (.006%)182Au
186m1Tl320(180) keV27.5(10) sβ+186Hg(7+)
186m2Tl690(180) keV2.9(2) s(10−)
187Tl81106186.975906(9)~51 sβ+187Hg(1/2+)
α (rare)183Au
187mTl335(3) keV15.60(12) sα183Au(9/2−)
IT187Tl
β+187Hg
188Tl81107187.97601(4)71(2) sβ+188Hg(2−)
188m1Tl40(30) keV71(1) sβ+188Hg(7+)
188m2Tl310(30) keV41(4) ms(9−)
189Tl81108188.973588(12)2.3(2) minβ+189Hg(1/2+)
189mTl257.6(13) keV1.4(1) minβ+ (96%)189Hg(9/2−)
IT (4%)189Tl
190Tl81109189.97388(5)2.6(3) minβ+190Hg2(−)
190m1Tl130(90)# keV3.7(3) minβ+190Hg7(+#)
190m2Tl290(70)# keV750(40) μs(8−)
190m3Tl410(70)# keV>1 μs9−
191Tl81110190.971786(8)20# minβ+191Hg(1/2+)
191mTl297(7) keV5.22(16) minβ+191Hg9/2(−)
192Tl81111191.97223(3)9.6(4) minβ+192Hg(2−)
192m1Tl160(50) keV10.8(2) minβ+192Hg(7+)
192m2Tl407(54) keV296(5) ns(8−)
193Tl81112192.97067(12)21.6(8) minβ+193Hg1/2(+#)
193mTl369(4) keV2.11(15) minIT (75%)193Tl9/2−
β+ (25%)193Hg
194Tl81113193.97120(15)33.0(5) minβ+194Hg2−
α (10−7%)190Au
194mTl300(200)# keV32.8(2) minβ+194Hg(7+)
195Tl81114194.969774(15)1.16(5) hβ+195Hg1/2+
195mTl482.63(17) keV3.6(4) sIT195Tl9/2−
196Tl81115195.970481(13)1.84(3) hβ+196Hg2−
196mTl394.2(5) keV1.41(2) hβ+ (95.5%)196Hg(7+)
IT (4.5%)196Tl
197Tl81116196.969575(18)2.84(4) hβ+197Hg1/2+
197mTl608.22(8) keV540(10) msIT197Tl9/2−
198Tl81117197.97048(9)5.3(5) hβ+198Hg2−
198m1Tl543.5(4) keV1.87(3) hβ+ (54%)198Hg7+
IT (46%)198Tl
198m2Tl687.2(5) keV150(40) ns(5+)
198m3Tl742.3(4) keV32.1(10) ms(10−)#
199Tl81118198.96988(3)7.42(8) hβ+199Hg1/2+
199mTl749.7(3) keV28.4(2) msIT199Tl9/2−
200Tl81119199.970963(6)26.1(1) hβ+200Hg2−
200m1Tl753.6(2) keV34.3(10) msIT200Tl7+
200m2Tl762.0(2) keV0.33(5) μs5+
201Tl[n 8]81120200.970819(16)72.912(17) hEC201Hg1/2+
201mTl919.50(9) keV2.035(7) msIT201Tl(9/2−)
202Tl81121201.972106(16)12.23(2) dβ+202Hg2−
202mTl950.19(10) keV572(7) μs7+
203Tl81122202.9723442(14)Observationally Stable[n 9]1/2+0.2952(1)0.29494–0.29528
203mTl3400(300) keV7.7(5) μs(25/2+)
204Tl81123203.9738635(13)3.78(2) yβ (97.1%)204Pb2−
EC (2.9%)204Hg
204m1Tl1104.0(4) keV63(2) μs(7)+
204m2Tl2500(500) keV2.6(2) μs(12−)
204m3Tl3500(500) keV1.6(2) μs(20+)
205Tl[n 10]81124204.9744275(14)Observationally Stable[n 11]1/2+0.7048(1)0.70472–0.70506
205m1Tl3290.63(17) keV2.6(2) μs25/2+
205m2Tl4835.6(15) keV235(10) ns(35/2–)
206TlRadium E81125205.9761103(15)4.200(17) minβ206Pb0−Trace[n 12]
206mTl2643.11(19) keV3.74(3) minIT206Tl(12–)
207TlActinium C81126206.977419(6)4.77(2) minβ207Pb1/2+Trace[n 13]
207mTl1348.1(3) keV1.33(11) sIT (99.9%)207Tl11/2–
β (.1%)207Pb
208TlThorium C"81127207.9820187(21)3.053(4) minβ208Pb5+Trace[n 14]
209Tl81128208.985359(8)2.161(7) minβ209Pb1/2+Trace[n 15]
210TlRadium C″81129209.990074(12)1.30(3) minβ (99.991%)210Pb(5+)#Trace[n 12]
β, n (.009%)209Pb
211Tl81130210.993480(50)80(16) sβ (97.8%)211Pb1/2+
β, n (2.2%)210Pb
212Tl81131211.998340(220)#31(8) sβ (98.2%)212Pb(5+)
β, n (1.8%)211Pb
213Tl81132213.001915(29)24(4) sβ (92.4%)213Pb1/2+
β, n (7.6%)212Pb
214Tl81133214.006940(210)#11(2) sβ (66%)214Pb5+#
β, n (34%)213Pb
215Tl81134215.010640(320)#10(4) sβ (95.4%)215Pb1/2+#
β, n (4.6%)214Pb
216Tl81135216.015800(320)#6(3) sβ216Pb5+#
β, n (<11.5%)215Pb
This table header & footer:
  1. ^ mTl – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
    EC:Electron capture
    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ Main isotope used in scintigraphy
  9. ^ Believed to undergo α decay to 199Au
  10. ^ Final decay product of 4n+1 decay chain (the Neptunium series)
  11. ^ Believed to undergo α decay to 201Au
  12. ^ a b Intermediate decay product of 238U
  13. ^ Intermediate decay product of 235U
  14. ^ Intermediate decay product of 232Th
  15. ^ Intermediate decay product of 237Np

Thallium-201

edit

Thallium-201 (201Tl) is a synthetic radioisotope of thallium. It has a half-life of 73 hours and decays by electron capture, emitting X-rays (~70–80 keV), and photons of 135 and 167 keV in 10% total abundance.[17] Thallium-201 is synthesized by the neutron activation of stable thallium in a nuclear reactor,[17][18] or by the 203Tl(p, 3n)201Pb nuclear reaction in cyclotrons, as 201Pb naturally decays to 201Tl afterwards.[19] It is a radiopharmaceutical, as it has good imaging characteristics without excessive patient radiation dose. It is the most popular isotope used for thallium nuclear cardiac stress tests.[20]

References

edit
  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Thallium". CIAAW. 2009.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ "Thallium Research". doe.gov. Department of Energy. Archived from the original on 2006-12-09. Retrieved 23 March 2018.
  5. ^ Manual for reactor produced radioisotopes from the International Atomic Energy Agency
  6. ^ "Bound-state beta decay of highly ionized atoms" (PDF). Archived from the original (PDF) on October 29, 2013. Retrieved June 9, 2013.
  7. ^ Marcillac, P.; Coron, N.; Dambier, G.; et al. (2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature. 422 (6934): 876–878. Bibcode:2003Natur.422..876D. doi:10.1038/nature01541. PMID 12712201. S2CID 4415582.
  8. ^ Half-life, decay mode, nuclear spin, and isotopic composition is sourced in:
    Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  9. ^ Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/3/030003.
  10. ^ Al-Aqeel, Muneerah Abdullah M. "Decay Spectroscopy of the Thallium Isotopes 176,177Tl". University of Liverpool. ProQuest 2447566201. Retrieved 21 June 2023.
  11. ^ Poli, G. L.; Davids, C. N.; Woods, P. J.; Seweryniak, D.; Batchelder, J. C.; Brown, L. T.; Bingham, C. R.; Carpenter, M. P.; Conticchio, L. F.; Davinson, T.; DeBoer, J.; Hamada, S.; Henderson, D. J.; Irvine, R. J.; Janssens, R. V. F.; Maier, H. J.; Müller, L.; Soramel, F.; Toth, K. S.; Walters, W. B.; Wauters, J. (1 June 1999). "Proton and $\ensuremath{\alpha}$ radioactivity below the $Z=82$ shell closure". Physical Review C. 59 (6): R2979–R2983. doi:10.1103/PhysRevC.59.R2979. Retrieved 21 June 2023.
  12. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  13. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  14. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  15. ^ Reich, E. S. (2010). "Mercury serves up a nuclear surprise: a new type of fission". Scientific American. Retrieved 12 May 2011.
  16. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  17. ^ a b Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  18. ^ "Manual for reactor produced radioisotopes" (PDF). International Atomic Energy Agency. 2003. Archived (PDF) from the original on 2011-05-21. Retrieved 2010-05-13.
  19. ^ Cyclotron Produced Radionuclides: Principles and Practice (PDF). International Atomic Energy Agency. 2008. ISBN 9789201002082. Retrieved 2022-07-01.
  20. ^ Maddahi, Jamshid; Berman, Daniel (2001). "Detection, Evaluation, and Risk Stratification of Coronary Artery Disease by Thallium-201 Myocardial Perfusion Scintigraphy 155". Cardiac SPECT imaging (2nd ed.). Lippincott Williams & Wilkins. pp. 155–178. ISBN 978-0-7817-2007-6. Archived from the original on 2017-02-22. Retrieved 2016-09-26.