Standard electrode potential (data page)

The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode, at:

The Nernst equation adjusts for general concentrations, pressures, or temperatures.

Simultaneous half-reactions do not in general add voltages, but instead add Gibbs free energy change: the product of the voltage and the number of electrons transferred, typically the Faraday constant. For example, from Fe2+ + 2e ⇌ Fe(s) (–0.44 V), the energy to create one neutral atom of Fe(s) from one Fe2+ ion and two electrons is 2 × 0.44 eV = 0.88 eV, or 84 895 J/(mol e). That value is also the standard formation energy for an Fe2+ ion, since e and Fe(s) both have zero formation energy.

Data from different sources may cause table inconsistencies. For example:

Additivity of Gibbs energy implies
not the experimental 0.159 V.

Table of standard electrode potentials edit

Legend: (s) – solid; (l) – liquid; (g) – gas; (aq) – aqueous (default for all charged species); (Hg) – amalgam; bold – water electrolysis equations.

ElementHalf-reaction / VElectronsRef.
OxidantReductant
SrSr+
+ e
Sr(s)-4.1011[1]
CaCa+
+ e
Ca(s)-3.81[1]
ThTh4+
+ e
Th3+
-3.61[2]
PrPr3+
+ e
Pr2+
-3.11Estimated[3]
N3N
2
(g) + 2H+ + 2e
2HN
3
(aq)
-3.092[4][5]
LiLi+
+ e
Li(s)-3.04011[5][6]: 153 
NN
2
(g) + 4H2O + 2e
2NH
2
OH
(aq) + 2OH
-3.042[4]
CsCs+
+ e
Cs(s)-3.0261[5]
CaCa(OH)
2
+ 2e
Ca(s) + 2OH-3.022[1]
ErEr3+
+ e
Er2+
-31[1]
BaBa(OH)
2
+ 2e
Ba(s) + 2OH-2.992[1]
RbRb+
+ e
Rb(s)-2.981[5]
KK+
+ e
K(s)-2.9311[5]
BaBa2+
+ 2e
Ba(s)-2.9122[5]
LaLa(OH)
3
(s) + 3e
La(s) + 3OH-2.93[5]
FrFr+
+ e
Fr(s)-2.91[1]
SrSr2+
+ 2e
Sr(s)-2.8992[5]
SrSr(OH)
2
+ 2e
Sr(s) + 2OH-2.882[1]
CaCa2+
+ 2e
Ca(s)-2.8682[5][6]: 153 
LiLi+
+ C
6
(s) + e
LiC
6
(s)
-2.841[5]
EuEu2+
+ 2e
Eu(s)-2.8122[5]
RaRa2+
+ 2e
Ra(s)-2.82[5]
HoHo3+
+ e
Ho2+-2.81[1]
BkBk3+
+ e
Bk2+
-2.81[1]
YbYb2+
+ 2e
Yb(s)-2.762[1]
NaNa+
+ e
Na(s)-2.711[5][7]
MgMg+
+ e
Mg(s)-2.71[1]
NdNd3+
+ e
Nd2+
-2.71[1]
MgMg(OH)
2
+ 2e
Mg(s) + 2OH-2.692[1]
SmSm2+
+ 2e
Sm(s)-2.682[1]
BeBe
2
O2−
3
+ 3H2O + 4e
2Be(s) + 6OH-2.634[1]
PmPm3+
+ e
Pm2+
-2.61[1]
DyDy3+
+ e
Dy2+
-2.61[1]
NoNo2+
+ 2e
No-2.52[1]
HfHfO(OH)
2
+ H2O + 4e
Hf(s) + 4OH-2.54[1]
ThTh(OH)
4
+ 4e
Th(s) + 4OH-2.484[1]
MdMd2+
+ 2e
Md-2.42[1]
TmTm2+
+ 2e
Tm(s)-2.42[1]
LaLa3+
+ 3e
La(s)-2.3793[5]
YY3+
+ 3e
Y(s)-2.3723[5]
MgMg2+
+ 2e
Mg(s)-2.3722[5]
ScScF3(aq) + 3H+ + 3eSc(s) + 3HF(aq)-2.373[6]: 792 
ZrZrO(OH)
2
(s) + H2O + 4e
Zr(s) + 4OH-2.364[5]
PrPr3+
+ 3e
Pr(s)-2.3533[1]
CeCe3+
+ 3e
Ce(s)-2.3363[1]
ErEr3+
+ 3e
Er(s)-2.3313[1]
HoHo3+
+ 3e
Ho(s)-2.333[1]
AlH
2
AlO
3
+ H2O + 3e
Al(s) + 4OH-2.333[1]
NdNd3+
+ 3e
Nd(s)-2.3233[1]
TmTm3+
+ 3e
Tm(s)-2.3193[1]
AlAl(OH)
3
(s) + 3e
Al(s) + 3OH-2.313[8]
SmSm3+
+ 3e
Sm(s)-2.3043[1]
FmFm2+ + 2eFm-2.32[1]
AmAm3+
+ e
Am2+
-2.31[1]
DyDy3+
+ 3e
Dy(s)-2.2953[1]
LuLu3+
+ 3e
Lu(s)-2.283[1]
ScScF+
2
+ 2H+ + 3e
Sc(s) + 2HF(l)-2.283[6]: 792 
TbTb3+
+ 3e
Tb(s)-2.283[1]
GdGd3+
+ 3e
Gd(s)-2.2793[1]
HH
2
(g) + 2e
2H
-2.232[1]
EsEs2+
+ 2e
Es(s)-2.232[1]
PmPm2+
+ 2e
Pm(s)-2.22[1]
TmTm3+
+ e
Tm2+-2.21[1]
DyDy2+
+ 2e
Dy(s)-2.22[1]
AcAc3+
+ 3e
Ac(s)-2.23[1]
YbYb3+
+ 3e
Yb(s)-2.193[1]
CfCf2+
+ 2e
Cf(s)-2.122[1]
NdNd2+
+ 2e
Nd(s)-2.12[1]
HoHo2+
+ 2e
Ho(s)-2.12[1]
ScSc3+
+ 3e
Sc(s)-2.0773[9]
AlAlF3−
6
+ 3e
Al(s) + 6F
-2.0693[1]
CmCm3+
+ 3e
Cm(s)-2.043[1]
PuPu3+
+ 3e
Pu(s)-2.0313[1]
PrPr2+
+ 2e
Pr(s)-22[1]
ErEr2+
+ 2e
Er(s)-22[1]
EuEu3+
+ 3e
Eu(s)-1.9913[1]
LrLr3+
+ 3e
Lr-1.963[1]
CfCf3+
+ 3e
Cf(s)-1.943[1]
EsEs3+
+ 3e
Es(s)-1.913[1]
PaPa4+
+ e
Pa3+
-1.91[1]
AmAm2+
+ 2e
Am(s)-1.92[1]
ThTh4+
+ 4e
Th(s)-1.8994[1]
FmFm3+
+ 3e
Fm-1.893[1]
NN2(g) + 2H2O(l) + 4H+ + 2e2NH3OH+-1.872[6]: 789 
NpNp3+
+ 3e
Np(s)-1.8563[1]
BeBe2+
+ 2e
Be(s)-1.8472[1]
PH
2
PO
2
+ e
P(s) + 2OH-1.821[1]
UU3+
+ 3e
U(s)-1.7983[1]
SrSr2+
+ 2e
Sr(Hg)-1.7932[1]
BH
2
BO
3
+ H2O + 3e
B(s) + 4OH-1.793[1]
ThThO
2
+ 4H+ + 4e
Th(s) + 2H2O-1.7894[1]
HfHfO2+
+ 2H+ + 4e
Hf(s) + H2O-1.7244[1]
PHPO2−
3
+ 2H2O + 3e
P(s) + 5OH-1.713[1]
SiSiO2−
3
+ 3H2O + 4e
Si(s) + 6OH-1.6974[1]
AlAl3+
+ 3e
Al(s)-1.6623[1]
TiTi2+
+ 2e
Ti(s)-1.632[7]
ZrZrO
2
(s) + 4H+ + 4e
Zr(s) + 2H2O-1.5534[10]
ZrZr4+
+ 4e
Zr(s)-1.454[10]
TiTi3+
+ 3e
Ti(s)-1.373[11]
TiTiO(s) + 2H+ + 2eTi(s) + H2O-1.312[6]: 792 
BB(OH)
4
+ 4H2O(l) + 8e
BH
4
+ 8OH
-1.248[6]: 788 
GaGaO(OH)
2
+ H2O(l) + 3e
Ga(s) + 3OH-1.223[6]: 788 
TiTi
2
O
3
(s) + 2H+ + 2e
2TiO(s) + H2O-1.232[6]: 792 
ZnZn(OH)2−
4
+ 2e
Zn(s) + 4OH-1.1992[10]
MnMn2+
+ 2e
Mn(s)-1.1852[10]
FeFe(CN)4−
6
+ 6H+ + 2e
Fe(s) + 6HCN(aq)-1.162[12]
CC(s) + 3H2O(l) + 2eCH3OH(l) + 2OH-1.1482[6]: 788 
CrCr(CN)3−
6
+ e
Cr(CN)4−
6
-1.1431[6]: 793 
TeTe(s) + 2eTe2−
-1.1432[13]
VV2+
+ 2e
V(s)-1.132[13]
NbNb3+
+ 3e
Nb(s)-1.0993[8]
SnSn(s) + 4H+ + 4eSnH
4
(g)
-1.074
PoPo(s) + 2ePo2−
-1.0212[14]
Cr[Cr(edta)(H2O)] + e[Cr(edta)(H2O)]2−-0.991[6]: 793 
P2H3PO4(aq) + 2H+ + 2e(H2PO3)2(aq) + H2O(l)-0.9332[6]: 789 
CCO2−
3
+ 3H+ + 2e
HCO
2
+ H2O(l)
-0.932[6]: 788 
TiTiO2+
+ 2H+ + 4e
Ti(s) + H2O-0.934
SiSiO
2
(quartz) + 4H+ + 4e
Si(s) + 2H2O-0.9094[6]: 788 
CrCr2+
+ 2e
Cr(s)-0.92[6]: 793 
BB(OH)
3
(aq) + 3H+ + 3e
B(s) + 3H2O-0.893[6]: 788 
FeFe(OH)
2
(s) + 2e
Fe(s) + 2OH-0.892[12]
FeFe
2
O
3
(s) + 3H2O + 2e
2Fe(OH)
2
(s) + 2OH
-0.862[12]
H2H2O + 2eH
2
(g) + 2OH
-0.82772[10]
BiBi(s) + 3H+ + 3eBiH
3
-0.83[10]
ZnZn2+
+ 2e
Zn(Hg)-0.76282[10]
ZnZn2+
+ 2e
Zn(s)-0.76182[10]
TaTa
2
O
5
(s) + 10H+ + 10e
2Ta(s) + 5H2O-0.7510
Te2Te(s) + 2eTe2−
2
-0.742[6]: 790 
NiNi(OH)
2
(s) + 2e
Ni(s) + 2OH-0.722[1]
NbNb2O5(s) + 10H+ + 10e2Nb(s) + 5H2O(l)-0.710[6]: 793 
AgAg
2
S
(s) + 2e
2Ag(s) + S2−
(aq)
-0.692
TeTe2−
2
+ 4H+ + 2e
2H2Te(g)-0.642[6]: 790 
SbSb(OH)
4
+ 3e
Sb(s) + 4OH-0.6393[6]: 789 
Au[Au(CN)
2
]
+ e
Au(s) + 2CN
-0.61
TaTa3+
+ 3e
Ta(s)-0.63[8]
PbPbO(s) + H2O + 2ePb(s) + 2OH-0.5802[8]
Ti2TiO
2
(s) + 2H+ + 2e
Ti
2
O
3
(s) + H2O
-0.562[6]: 792 
GaGa3+
+ 3e
Ga(s)-0.5493[8]
UU4+
+ e
U3+
-0.521[15]
PH
3
PO
2
(aq) + H+ + e
P(white)[note 1] + 2H2O-0.5081[10]
PH
3
PO
3
(aq) + 2H+ + 2e
H
3
PO
2
(aq) + H2O
-0.4992[10]
NiNiO
2
(s) + 2H2O + 2e
Ni(OH)
2
(s) + 2OH
-0.492[1]
SbSb(OH)
6
+ 2e
Sb(OH)
4
+ 2OH
-0.4652[6]: 789 
PH
3
PO
3
(aq) + 3H+ + 3e
P(red)[note 1] + 3H2O-0.4543[10]
BiBi2O3(s) + 3H2O(l) + 6eBi(s) + 6OH-0.4526[6]: 789 
TaTaF2−
7
+ 7H+ + 5e
Ta(s) + 7HF(l)-0.455[6]: 793 
InIn3+
+ 2e
In+-0.4442[6]: 788 
CuCu(CN)
2
+ e
Cu(s) + 2CN
-0.441[13]
FeFe2+
+ 2e
Fe(s)-0.442[7]
C2CO
2
(g) + 2H+ + 2e
HOOCCOOH(aq)-0.432
CrCr3+
+ e
Cr2+
-0.4071[8]
CdCd2+
+ 2e
Cd(s)-0.42[7]
TiTi3+
+ e
Ti2+
-0.371[6]: 792 
CuCu
2
O
(s) + H2O + 2e
2Cu(s) + 2OH-0.362[10]
PbPbSO
4
(s) + 2e
Pb(s) + SO2−
4
-0.35882[10]
PbPbSO
4
(s) + 2e
Pb(Hg) + SO2−
4
-0.35052[10]
EuEu3+
+ e
Eu2+
-0.351[15]
InIn3+
+ 3e
In(s)-0.343[13]
TlTl+
+ e
Tl(s)-0.341[13]
GeGe(s) + 4H+ + 4eGeH
4
(g)
-0.294
CoCo2+
+ 2e
Co(s)-0.282[10]
PH
3
PO
4
(aq) + 2H+ + 2e
H
3
PO
3
(aq) + H2O
-0.2762[10]
NN2(g) + 8H+ + 6e2NH+
4
-0.276[16]
VV3+
+ e
V2+
-0.261[7]
NiNi2+
+ 2e
Ni(s)-0.2572[8]
S2HSO
4
+ 2H+ + 2e
S2O2−
6
+ 2H2O(l)
-0.2532[6]: 790 
AsAs(s) + 3H+ + 3eAsH
3
(g)
-0.233[13]
NN2(g) + 5H+ + 4eN2H+
5
-0.234[6]: 789 
GaGa+
+ e
Ga(s)-0.21[8]
AgAgI(s) + eAg(s) + I
-0.152241[10]
GeGeO2(s) + 4H+ + 4eGe(s) + 2H2O(l)-0.154[16]
MoMoO
2
(s) + 4H+ + 4e
Mo(s) + 2H2O-0.154
SiSi(s) + 4H+ + 4eSiH
4
(g)
-0.144
SnSn2+
+ 2e
Sn(s)-0.132
OO
2
(g) + H+ + e
HO
2
(aq)
-0.131
InIn+ + eIn(s)-0.1261[6]: 788 
PbPb2+
+ 2e
Pb(s)-0.1262[7]
WWO
2
(s) + 4H+ + 4e
W(s) + 2H2O-0.124
GeGeO
2
(s) + 2H+ + 2e
GeO(s) + H2O-0.1182[8]
PP(red) + 3H+ + 3ePH
3
(g)
-0.1113[10]
CCO
2
(g) + 2H+ + 2e
HCOOH(aq)-0.112
SeSe(s) + 2H+ + 2eH
2
Se
(g)
-0.112[6]: 790 
CCO
2
(g) + 2H+ + 2e
CO(g) + H2O-0.112
Snα-SnO(s) + 2H+ + 2eSn(s) + H2O-0.1042[6]: 788 
CuCu(NH
3
)+
2
+ e
Cu(s) + 2NH
3
(aq)
-0.11[13]
NbNb2O5(s) + 10H+ + 4e2Nb3+
+ 5H2O(l)
-0.14[6]: 793 
WWO
3
(aq) + 6H+ + 6e
W(s) + 3H2O-0.096[13]
SnSnO
2
(s) + 2H+ + 2e
α-SnO(s) + H2O-0.0882[6]: 788 
FeFe
3
O
4
(s) + 8H+ + 8e
3Fe(s) + 4H2O-0.0858[17]
VVOH2+
+ H+ + e
V2+
+ H2O(l)
-0.0821[6]: 793 
PP(white) + 3H+ + 3ePH
3
(g)
-0.0633[10]
NN2O(g) + H2O(l) + 6H+ + 4e2NH3OH+-0.054[6]: 789 
FeFe3+
+ 3e
Fe(s)-0.043[12]
CHCOOH(aq) + 2H+ + 2eHCHO(aq) + H2O-0.0342[6]: 788 
H2H+ + 2eH
2
(g)
02
AgAgBr(s) + eAg(s) + Br
0.071331[10]
SS
4
O2−
6
+ 2e
2S
2
O2−
3
0.082
NN
2
(g) + 2H2O + 6H+ + 6e
2NH
4
OH
(aq)
0.0926
HgHgO(s) + H2O + 2eHg(l) + 2OH0.09772
CuCu(NH
3
)2+
4
+ e
Cu(NH
3
)+
2
+ 2NH
3
(aq)
0.11[13]
RuRu(NH
3
)3+
6
+ e
Ru(NH
3
)2+
6
0.11[15]
NN
2
H
4
(aq) + 4H2O + 2e
2NH+
4
+ 4OH
0.112[4]
MoH
2
MoO
4
(aq) + 6H+ + 6e
Mo(s) + 4H2O0.116
GeGe4+
+ 4e
Ge(s)0.124
CC(s) + 4H+ + 4eCH
4
(g)
0.134[13]
CHCHO(aq) + 2H+ + 2eCH
3
OH
(aq)
0.132
SS(s) + 2H+ + 2eH
2
S
(g)
0.1442[6]: 790 
SbSb2O3(s) + 6H+ + 6e2Sb(s) + 3H2O0.156[6]: 789 
SnSn4+
+ 2e
Sn2+
0.1512[8]
SHSO
4
+ 3H+ + 2e
SO
2
(aq) + 2H2O
0.1582[6]: 790 
CuCu2+
+ e
Cu+
0.1591[13]
UUO2+
2
+ e
UO+
2
0.1631[15]
SSO2−
4
+ 4H+ + 2e
SO
2
(aq) + 2H2O
0.172
TiTiO2+
+ 2H+ + e
Ti3+
+ H2O
0.191
SbSbO+
+ 2H+ + 3e
Sb(s) + H2O0.23
Fe3Fe
2
O
3
(s) + 2H+ + 2e
2Fe
3
O
4
(s) + H2O
0.222[18]: p.100 
AgAgCl(s) + eAg(s) + Cl
0.222331[10]
AsH
3
AsO
3
(aq) + 3H+ + 3e
As(s) + 3H2O0.243[6]: 789 
RuRu3+
(aq) + e
Ru2+
(aq)
0.2491[19]
PbPbO2(s) + H2O + 2eα-PbO(s) + 2OH0.2542[6]: 788 
GeGeO(s) + 2H+ + 2eGe(s) + H2O0.262
HgHg2Cl2(s) + 2e2Hg(l) + 2Cl0.272[16]
UUO+
2
+ 4H+ + e
U4+
+ 2H2O
0.2731[15]
ReRe3+
+ 3e
Re(s)0.3003[8]
AtAt + eAt0.31[20]
BiBi3+
+ 3e
Bi(s)0.3083[10]
C2HCNO + 2H+ + 2e(CN)2 + 2H2O0.3302[8]
CuCu2+
+ 2e
Cu(s)0.3372[13]
VVO2+
+ 2H+ + e
V3+
+ H2O
0.3371[6]: 793 
SbSb2O4(s) + 2H+ + 2eSb2O3(s) + H2O(l)0.3422[6]: 789 
AtAt+ + 2eAt-0.362[21]
Fe[Fe(CN)
6
]3−
+ e
[Fe(CN)
6
]4−
0.37041[22]
C(CN)2 + 2H+ + 2e2HCN0.3732[8]
P(H2PO3)2(aq) + 2H+ + 2e2H3PO30.382[6]: 789 
S2SO2(aq) + 2H+ + 2eS2O2−
3
+ H2O(l)
0.42[6]: 790 
OO
2
(g) + 2H2O + 4e
4OH(aq)0.4014[7]
MoH
2
MoO
4
+ 6H+ + 3e
Mo3+
+ 4H2O
0.433
RuRu2+
(aq) + 2e
Ru0.4552[19]
VVO(OH)+ + 2H+ + eVOH2+
+ H2O(l)
0.4811[6]: 793 
CCH
3
OH
(aq) + 2H+ + 2e
CH
4
(g) + H2O
0.52
SSO
2
(aq) + 4H+ + 4e
S(s) + 2H2O0.54[6]: 790 
S4SO
2
(aq) + 4H+ + 8e
S4O2−
6
+ 2H2O(l)
0.518[16]
CuCu+
+ e
Cu(s)0.521[13]
CCO(g) + 2H+ + 2eC(s) + H2O0.522[6]: 788 
II
3
+ 2e
3I
0.532[7]
TeTeO2(s) + 4H+ + 4eTe(s) + 2H2O(l)0.534[6]: 790 
CuCu2+
+ Cl + e
CuCl(s)0.541[16]
II
2
(s) + 2e
2I
0.542[7]
Au[AuI
4
]
+ 3e
Au(s) + 4I
0.563
AsH
3
AsO
4
(aq) + 2H+ + 2e
H
3
AsO
3
(aq) + H2O
0.562[6]: 789 
SS2O2−
6
+ 4H+ + 2e
2H2SO30.5692[6]: 790 
Au[AuI
2
]
+ e
Au(s) + 2I
0.581
MnMnO
4
+ 2H2O + 3e
MnO
2
(s) + 4OH
0.5953[1]
SS
2
O2−
3
+ 6H+ + 4e
2S(s) + 3H2O0.64[6]: 790 
FeFc+
+ e
Fc(s)0.631Substantial literature variation[23]
MoH
2
MoO
4
(aq) + 2H+ + 2e
MoO
2
(s) + 2H2O
0.652
NHN3(aq) + 11H+ + 8e3NH+
4
0.698[16]
OO
2
(g) + 2H+ + 2e
H
2
O
2
(aq)
0.6952[8]
SbSb2O5(s) + 4H+ + 4eSb2O3(s) + 2H2O0.6994[6]: 789 
C + 2H+ + 2e 0.69922[10]
VH2V10O4−
28
+ 24H+ + 10e
10VO(OH)+ + 8H2O(l)0.72310[6]: 793 
PtPtCl2−
6
+ 2e
PtCl2−
4
+ 2Cl
0.7262[15]
FeFe
2
O
3
(s) + 6H+ + 2e
2Fe2+
+ 3H2O
0.7282[18]: p.100 
SeH
2
SeO
3
(aq) + 4H+ + 4e
Se(s) + 3H2O0.744[8]
AtAtO+ + 2H+ + 2eAt+ + H2O0.742[21]
TlTl3+
+ 3e
Tl(s)0.7413[8]
NoNo3+
+ e
No2+
0.751[24]
PtPtCl2−
4
+ 2e
Pt(s) + 4Cl
0.7582[15]
BrBrO + H2O(l) + 2eBr + 2OH0.762[6]: 791 
PoPo4+ + 4ePo0.764[8]
S(SCN)2 + 2e2SCN-0.7692[25][8]
FeFe3+
+ e
Fe2+
0.7711[8]
HgHg2+
2
+ 2e
2Hg(l)0.79732[8]
AgAg+
+ e
Ag(s)0.79961[10]
N2NO
3
(aq) + 4H+ + 2e
N
2
O
4
(g) + 2H2O
0.8032[6]: 789 
Fe2FeO2−
4
+ 5H2O + 6e
Fe
2
O
3
(s) + 10OH
0.816[12]
Au[AuBr
4
]
+ 3e
Au(s) + 4Br
0.853
HgHg2+
+ 2e
Hg(l)0.852
Ir[IrCl
6
]2−
+ e
[IrCl
6
]3−
0.871[6]: 153 
MnMnO
4
+ H+ + e
HMnO
4
0.91
PoPo4+ + 2ePo2+0.92[8]
Hg2Hg2+
+ 2e
Hg2+
2
0.912[13]
PdPd2+
+ 2e
Pd(s)0.9152[15]
Au[AuCl
4
]
+ 3e
Au(s) + 4Cl
0.933
NNO
3
+ 3H+ + 2e
HNO2(aq)0.942[6]: 789 
MnMnO
2
(s) + 4H+ + e
Mn3+
+ 2H2O
0.951
NNO
3
(aq) + 4H+ + 3e
NO(g) + 2H2O(l)0.9583[7]
Au[AuBr
2
]
+ e
Au(s) + 2Br
0.961
FeFe
3
O
4
(s) + 8H+ + 2e
3Fe2+
+ 4H2O
0.982[18]: p.100 
Xe[HXeO
6
]3−
+ 2H2O + 2e
[HXeO
4
]
+ 4OH
0.992[6]: 792 [26]
NHNO2(aq) + H+ + eNO(g) + H2O(l)0.9961[6]: 789 
AtHAtO + H+ + eAt + H2O1.01[20]
V[VO
2
]+
(aq) + 2H+ + e
[VO]2+
(aq) + H2O
11[27]
TeH
6
TeO
6
(aq) + 2H+ + 2e
TeO
2
(s) + 4H2O
1.022[27]
NNO2(g) + 2H+ + 2eNO(g) + H2O(l)1.032[16]
BrBr
3
+ 2e
3Br
1.052[16]
SbSb2O5(s) + 2H+ + 2eSb2O4(s) + H2O(l)1.0552[6]: 789 
IICl
2
+ e
2Cl
+ I(s)
1.061[16]
BrBr
2
(l) + 2e
2Br
1.0662[10]
NN2O4(g) + 2H+ + 2e2HNO21.072[6]: 789 
BrBr
2
(aq) + 2e
2Br
1.08732[10]
RuRuO
2
+ 4H+ + 2e
Ru2+
(aq) + 2H2O
1.1202[19]
CuCu2+
+ 2CN
+ e
Cu(CN)
2
1.121[13]
IIO
3
+ 5H+ + 4e
HIO(aq) + 2H2O1.134[6]: 791 
OH2O2(aq) + H+ + eH2O(l) + HO•1.141[6]: 790 
Au[AuCl
2
]
+ e
Au(s) + 2Cl
1.151
SeHSeO
4
+ 3H+ + 2e
H
2
SeO
3
(aq) + H2O
1.152[6]: 790 
AgAg
2
O
(s) + 2H+ + 2e
2Ag(s) + H2O1.172
ClClO
3
+ 2H+ + e
ClO
2
(g) + H2O
1.1751[6]: 791 
Xe[HXeO
6
]3−
+ 5H2O + 8e
Xe(g) + 11OH1.188[26]
PtPt2+
+ 2e
Pt(s)1.1882[15]
ClClO
2
(g) + H+ + e
HClO
2
(aq)
1.191[28]
I2IO
3
+ 12H+ + 10e
I
2
(s) + 6H2O
1.210[16]
MnMnO
2
(s) + 4H+ + 2e
Mn2+
+ 2H2O
1.2242[10]
OO
2
(g) + 4H+ + 4e
2H2O1.2294[7]
NN2H+
5
+ 3H+ + 2e
2NH+
4
1.282[6]: 789 
ClClO
4
+ 2H+ + 2e
ClO
3
+ H2O
1.232[29]
Ru[Ru(bipy)
3
]3+
+ e
[Ru(bipy)
3
]2+
1.241[1]
Xe[HXeO
4
]
+ 3H2O + 6e
Xe(g) + 7OH1.246[6]: 792 [26]
N2NO
3
+ 12H+ + 10e
N2(g) + 6H2O(l)1.2510[6]: 789 
TlTl3+
+ 2e
Tl+
1.252[6]: 788 
N2HNO2(aq) + 4H+ + 4eN2O(g) + 3H2O(l)1.2974[6]: 789 
CrCr
2
O2−
7
+ 14H+ + 6e
2Cr3+
+ 7H2O
1.386[6]: 793 
NNH3OH+ + 2H+ + 2eNH+
4
+ H2O(l)
1.352[6]: 789 
ClCl
2
(g) + 2e
2Cl
1.362[7]
RuRuO
4
(aq) + 8H+ + 5e
Ru2+
(aq) + 4H2O
1.3685[19]
RuRuO
4
+ 4H+ + 4e
RuO
2
+ 2H2O
1.3874[19]
CoCoO
2
(s) + 4H+ + e
Co3+
+ 2H2O
1.421
N2NH
3
OH+
+ H+ + 2e
N
2
H+
5
+ 2H2O
1.422[4]
I2HIO(aq) + 2H+ + 2eI
2
(s) + 2H2O
1.442[6]: 791 
BrBrO
3
+ 5H+ + 4e
HBrO(aq) + 2H2O1.4474[6]: 791 
Pbβ-PbO
2
(s) + 4H+ + 2e
Pb2+
+ 2H2O
1.462[13]
Pbα-PbO
2
(s) + 4H+ + 2e
Pb2+
+ 2H2O
1.4682[13]
Br2BrO
3
+ 12H+ + 10e
Br
2
(l) + 6H2O
1.4810
AtHAtO3 + 4H+ + 4eHAtO + 2H2O1.54[20]
MnMnO
4
+ 8H+ + 5e
Mn2+
+ 4H2O
1.515[16]
OHO
2
+ H+ + e
H
2
O
2
(aq)
1.511
AuAu3+
+ 3e
Au(s)1.523
RuRuO2−
4
(aq) + 8H+ + 4e
Ru2+
(aq) + 4H2O
1.5634[19]
N2NO(g) + 2H+ + 2eN2O(g) + H2O(l)1.592[6]: 789 
NiNiO
2
(s) + 2H+ + 2e
Ni2+
+ 2OH
1.592
CeCe4+
+ e
Ce3+
1.611
Cl2HClO(aq) + 2H+ + 2eCl
2
(g) + 2H2O
1.632[28]
IIO
4
+ 2H+ + 2e
IO
3
+ H2O
1.642[29]
AgAg
2
O
3
(s) + 6H+ + 4e
2Ag+
+ 3H2O
1.674
ClHClO
2
(aq) + 2H+ + 2e
HClO(aq) + H2O1.672[28]
PbPb4+
+ 2e
Pb2+
1.692[13]
MnMnO
4
+ 4H+ + 3e
MnO
2
(s) + 2H2O
1.73[16]
BrBrO
4
+ 2H+ + 2e
BrO
3
+ H2O
1.742[29]
AgAgO(s) + 2H+ + eAg+
+ H2O
1.771
NN2O(g) + 2H+ + 2eN2(g) + H2O(l)1.772[6]: 789 
OH
2
O
2
(aq) + 2H+ + 2e
2H2O1.782[28]
AuAu+
+ e
Au(s)1.831[13]
CoCo3+
+ e
Co2+
1.921[8]
AgAg2+
+ e
Ag+
1.981[13]
OS
2
O2−
8
+ 2e
2SO2−
4
2.012[10]
OO
3
(g) + 2H+ + 2e
O
2
(g) + H2O
2.0752[15]
MnHMnO
4
+ 3H+ + 2e
MnO
2
(s) + 2H2O
2.092
XeXeO
3
(aq) + 6H+ + 6e
Xe(g) + 3H2O2.126[6]: 792 [26]
XeH
4
XeO
6
(aq) + 8H+ + 8e
Xe(g) + 6H2O2.188[6]: 792 [26]
FeFeO2−
4
+ 8H+ + 3e
Fe3+
+ 4H2O
2.23[30]
XeXeF
2
(aq) + 2H+ + 2e
Xe(g) + 2HF(aq)2.322[26][28]
OHO• + H+ + eH2O(l)2.381[6]: 790 
XeH
4
XeO
6
(aq) + 2H+ + 2e
XeO
3
(aq) + 3H2O
2.422[26][6]: 792 
FF
2
(g) + 2e
2F
2.872[6]: 153 [7][13]
CmCm4+ + eCm3+3.01Estimated[3]
FF
2
(g) + 2H+ + 2e
2HF(aq)3.0772[3]
TbTb4+ + eTb3+3.11Estimated[3]
PrPr4+ + ePr3+3.21Estimated[3]
KrKrF
2
(aq) + 2e
Kr(g) + 2F
(aq)
3.272Estimated[31]

See also edit

Notes edit

  1. ^ a b Not specified in the indicated reference, but assumed due to the difference between the value −0.454 and that computed by (2×(−0.499) + (−0.508))/3 = −0.502, exactly matching the difference between the values for white (−0.063) and red (−0.111) phosphorus in equilibrium with PH3.

References edit

  1. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0487-3.
  2. ^ Greenwood and Earnshaw, p. 1263
  3. ^ a b c d e Bratsch, Stephen G. (July 29, 1988) [1 March 1988]. "Standard electrode potentials and temperature coefficients in water at 298.15 K" (PDF). Journal of Physical and Chemical Reference Data. 18 (1). American Institute of Physics (published 1989): 1–21. doi:10.1063/1.555839 – via NIST.
  4. ^ a b c d Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  5. ^ a b c d e f g h i j k l m n o p q Vanýsek, Petr (2011). "Electrochemical Series". In Haynes, William M. (ed.). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. pp. 5–80–9. ISBN 978-1-4398-5512-6.
  6. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce Atkins, Peter; Overton, Tina; Rourke, Jonathan; Weller, Mark; Armstrong, Fraser; Hagerman, Michael (2010). Inorganic Chemistry (5th ed.). New York: W. H. Freeman. ISBN 978-1-42-921820-7.
  7. ^ a b c d e f g h i j k l m Atkins, Peter W. (1997). Physical Chemistry (6th ed.). W.H. Freeman. ISBN 9780716734659.
  8. ^ a b c d e f g h i j k l m n o p q r s t u v Petr Vanysek. "Electrochemical series" (PDF). depa.fquim.unam.mx. Archived from the original (PDF) on 2021-09-16.
  9. ^ David R. Lide, ed., CRC Handbook of Chemistry and Physics, Internet Version 2005, http://www.hbcpnetbase.com Archived 2017-07-24 at the Wayback Machine, CRC Press, Boca Raton, FL, 2005.
  10. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab Vanýsek, Petr (2012). "Electrochemical Series". In Haynes, William M. (ed.). Handbook of Chemistry and Physics (93rd ed.). CRC Press. pp. 5–80. ISBN 9781439880494.
  11. ^ Aylward, Gordon; Findlay, Tristan (2008). SI Chemical Data (6th ed.). Wiley. ISBN 978-0-470-81638-7.
  12. ^ a b c d e "compounds information". Iron. WebElements Periodic Table of the Elements.
  13. ^ a b c d e f g h i j k l m n o p q r s t u Bard, Allen J.; Parsons, Roger; Jordan, Joseph (1985). Standard Potentials in Aqueous Solution. CRC Press. ISBN 978-0-8247-7291-8.
  14. ^ Brown, Susan A.; Brown, Paul L. (2020). "The pH-potential diagram for polonium". The Aqueous Chemistry of Polonium and the Practical Application of its Thermochemistry. Elsevier. doi:10.1016/b978-0-12-819308-2.00004-8. ISBN 978-0-12-819308-2. S2CID 213141476.
  15. ^ a b c d e f g h i j Bard, A.J.; Faulkner, L.R. (2001). Electrochemical Methods. Fundamentals and Applications (2nd ed.). Wiley. ISBN 9781118312803.
  16. ^ a b c d e f g h i j k l Lee, J. L. (1983) [1977]. A New Concise Inorganic Chemistry (3rd ed.). London / Wokingham, Berkshire: English Language Book Society & Van Nostrand Reinhold (UK). p. 107. ISBN 0-442-30179-0. OL 4079768W – via the Internet Archive.
  17. ^ Pourbaix, Marcel (1966). Atlas of Electrochemical Equilibria in Aqueous Solutions. Houston, Texas; Cebelcor, Brussels: NACE International. OCLC 475102548.
  18. ^ a b c Pang, Suh Cem; Chin, Suk Fun; Anderson, Marc A. (July 2007). "Redox equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of pH and redox potential". J. Colloid Interface Sci. 311 (1): 94–101. Bibcode:2007JCIS..311...94P. doi:10.1016/j.jcis.2007.02.058. PMID 17395194. Retrieved 2017-03-26.
  19. ^ a b c d e f Greenwood and Earnshaw, p. 1077
  20. ^ a b c Lavrukhina, Avgusta Konstantinovna; Pozdni︠a︡kov, Aleksandr Aleksandrovich (1970). Analytical chemistry of technetium, promethium, astatine and francium. Ann Arbor: Ann Arbor-Humphrey Science Publishers. p. 237. ISBN 0-250-39923-7. OCLC 186926.
  21. ^ a b Champion, J.; Alliot, C.; Renault, E.; Mokili, B. M.; Chérel, M.; Galland, N.; Montavon, G. (2009-12-16). "Astatine Standard Redox Potentials and Speciation in Acidic Medium" (PDF). The Journal of Physical Chemistry A. 114 (1). American Chemical Society (ACS): 576–582. doi:10.1021/jp9077008. ISSN 1089-5639. PMID 20014840. S2CID 15738065.
  22. ^ Rock, Peter A. (February 1966). "The Standard Oxidation Potential of the Ferrocyanide-Ferricyanide Electrode at 25° and the Entropy of Ferrocyanide Ion". The Journal of Physical Chemistry. 70 (2): 576–580. doi:10.1021/j100874a042. ISSN 0022-3654.
  23. ^ Pavlishchuk, Vitaly V.; Addison, Anthony W. (January 2000). "Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C". Inorganica Chimica Acta. 298 (1): 97–102. doi:10.1016/S0020-1693(99)00407-7.
  24. ^ Toyoshima, A.; Kasamatsu, Y.; Tsukada, K.; Asai, M.; Kitatsuji, Y.; Ishii, Y.; Toume, H.; Nishinaka, I.; Haba, H.; Ooe, K.; Sato, W.; Shinohara, A.; Akiyama, K.; Nagame, Y. (8 July 2009). "Oxidation of element 102, nobelium, with flow electrolytic column chromatography on an atom-at-a-time scale". Journal of the American Chemical Society. 131 (26): 9180–1. doi:10.1021/ja9030038. PMID 19514720.
  25. ^ Kaufmann, H. P. (1925). "Das freie Rhodan und seine Anwendung in der Maßanalyse. Eine neue Kennzahl der Fette" [Unbound rhodanium and its application to elemental analysis: A new measurement technique for fats]. Archiv der Pharmazie und Berichte der Deutschen Pharmazeutischen Gesellschaft (in German). 263: 675–721 – via HathiTrust.
  26. ^ a b c d e f g "compounds information". Xenon. WebElements Periodic Table of the Elements.
  27. ^ a b Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred (1999), Advanced Inorganic Chemistry (6th ed.), New York: Wiley-Interscience, ISBN 0-471-19957-5.
  28. ^ a b c d e Ghosh, Abhik; Berg, Steffen (2014). Arrow Pushing in Inorganic Chemistry: A logical approach to the chemistry of the main-group elements. Hoboken: Wiley. p. 12. ISBN 978-1-118-17398-5.
  29. ^ a b c Appelman, Evan H. (1973-04-01). "Nonexistent compounds. Two case histories". Accounts of Chemical Research. 6 (4). American Chemical Society (ACS): 113–117. doi:10.1021/ar50064a001. ISSN 0001-4842.
  30. ^ Courtney, Arlene. "Oxidation Reduction Chemistry of the Elements". Ch 412 Advanced Inorganic Chemistry: Reading Materials. Western Oregon University.
  31. ^ Leszczyński, P.J.; Grochala, W. (2013). "Strong Cationic Oxidizers: Thermal Decomposition, Electronic Structure and Magnetism of Their Compounds" (PDF). Acta Chim. Slov. 60 (3): 455–470. PMID 24169699. Archived (PDF) from the original on 2022-10-09.

External links edit