Sodium/glucose cotransporter 2

(Redirected from SGLT2)

The sodium/glucose cotransporter 2 (SGLT2) is a protein that in humans is encoded by the SLC5A2 (solute carrier family 5 (sodium/glucose cotransporter)) gene.[5]

SLC5A2
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesSLC5A2, SGLT2, solute carrier family 5 member 2
External IDsOMIM: 182381; MGI: 2181411; HomoloGene: 2289; GeneCards: SLC5A2; OMA:SLC5A2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_003041

NM_133254

RefSeq (protein)

NP_003032

NP_573517

Location (UCSC)Chr 16: 31.48 – 31.49 MbChr 7: 127.86 – 127.87 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function

edit

SGLT2 is a member of the sodium glucose cotransporter family, which are sodium-dependent glucose transport proteins. SGLT2 is the major cotransporter involved in glucose reabsorption in the kidney.[6] SGLT2 is located in the early proximal tubule, and is responsible for reabsorption of 80-90% of the glucose filtered by the kidney glomerulus.[7] Most of the remaining glucose absorption is by sodium/glucose cotransporter 1 (SGLT1) in more distal sections of the proximal tubule.[8]

SGLT2 inhibitors for diabetes

edit

SGLT2 inhibitors are also called gliflozins or flozins. They lead to a reduction in blood glucose levels, and therefore have potential use in the treatment of type 2 diabetes. Gliflozins enhance glycemic control as well as reduce body weight and systolic and diastolic blood pressure.[9] The gliflozins canagliflozin, dapagliflozin, and empagliflozin may lead to euglycemic ketoacidosis.[10][11] Other side effects of gliflozins include increased risk of Fournier gangrene[12] and of (generally mild) genital infections such as candidal vulvovaginitis.[13]

Clinical significance

edit

Mutations in this gene are also associated with renal glycosuria.[14]

See also

edit

References

edit

Further reading

edit